MAP-Net: SAR and Optical Image Matching via Image-Based Convolutional Network With Attention Mechanism and Spatial Pyramid Aggregated Pooling

人工智能 计算机科学 计算机视觉 棱锥(几何) 图像(数学) 联营 模式识别(心理学) 卷积神经网络 匹配(统计) 图像匹配 上下文图像分类 遥感 地质学 数学 几何学 统计
作者
Song Cui,Ailong Ma,Liangpei Zhang,Miaozhong Xu,Yanfei Zhong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:46
标识
DOI:10.1109/tgrs.2021.3066432
摘要

The complementarity of synthetic aperture radar (SAR) and optical images allows remote sensing observations to "see" unprecedented discoveries. Image matching plays a fundamental role in the fusion and application of SAR and optical images. However, both the geometric imaging pattern and the physical radiation mechanism of these two sensors are significantly different, so that the images show complex geometric distortion and nonlinear radiation differences. This phenomenon brings great challenges to image matching, which neither the handcrafted descriptors nor the deep learning-based methods have adequately addressed. In this article, a novel image-based matching method for SAR to optical images via an image-based convolutional network with spatial pyramid aggregated pooling (SPAP) and an attention mechanism is proposed, namely MAP-Net. The original image is embedded through the convolutional neural network to generate the feature map. Through the information extraction and abstraction of the original imagery, the embedded features containing the high-level semantic information are more robust to the geometric distortion and radiation variation among the different modal images, which is beneficial to the matching of cross-modal images. The adoption of the SPAP module makes the network more capable of integrating global and local contextual information. The attention block weights the dense features generated from the network to extract the key features that are invariant, distinguishable, repeatable, and suitable for the image matching task. In the experiments, five sets of multisource and multiresolution SAR and optical images with wide and varied ground coverage were used to evaluate the accuracy of MAP-Net, compared to both handcrafted and deep learning-based methods. The experimental results show that the MAP-Net method is superior to the current state-of-the-art image matching methods for SAR to optical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
4秒前
4秒前
星辰大海应助W29采纳,获得10
5秒前
深情安青应助ocean采纳,获得10
5秒前
科研帽发布了新的文献求助10
5秒前
sunshine完成签到,获得积分10
7秒前
wanci应助酷酷的依波采纳,获得10
8秒前
8秒前
8秒前
10秒前
CodeCraft应助杨迅采纳,获得10
10秒前
10秒前
大卷发布了新的文献求助10
10秒前
SciGPT应助一休采纳,获得10
11秒前
瑞思摆发布了新的文献求助10
13秒前
顾矜应助1111采纳,获得10
13秒前
cmx发布了新的文献求助10
13秒前
果小镁发布了新的文献求助10
14秒前
迷路幻桃完成签到,获得积分10
14秒前
15秒前
CipherSage应助谢谢sang采纳,获得10
15秒前
16秒前
WWY完成签到,获得积分10
16秒前
友好的小笼包完成签到,获得积分10
16秒前
清秀初柳完成签到,获得积分20
17秒前
酷酷的依波完成签到,获得积分10
17秒前
科研通AI5应助许坤采纳,获得10
17秒前
19秒前
可爱的函函应助曾经不言采纳,获得10
19秒前
共享精神应助舒心的亦瑶采纳,获得10
20秒前
NexusExplorer应助hwq采纳,获得10
20秒前
852应助aaaa采纳,获得10
20秒前
21秒前
初夏发布了新的文献求助10
21秒前
杨迅发布了新的文献求助10
21秒前
21秒前
ocean发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515965
求助须知:如何正确求助?哪些是违规求助? 3098115
关于积分的说明 9238144
捐赠科研通 2793134
什么是DOI,文献DOI怎么找? 1532862
邀请新用户注册赠送积分活动 712391
科研通“疑难数据库(出版商)”最低求助积分说明 707256