作者
Anne M. Filppula,Päivi Hirvensalo,Heli Parviainen,Vilma E. Ivaska,K. Ivar Lönnberg,Feng Deng,Jenni Viinamäki,Mika Kurkela,Mikko Neuvonen,Mikko Niemi
摘要
This study aimed to comprehensively investigate the in vitro metabolism of statins. The metabolism of clinically relevant concentrations of atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin, and their metabolites were investigated using human liver microsomes (HLMs), human intestine microsomes (HIMs), liver cytosol, and recombinant cytochrome P450 enzymes. We also determined the inhibitory effects of statin acids on their pharmacological target, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. In HLMs, statin lactones were metabolized to a much higher extent than their acid forms. Atorvastatin lactone and simvastatin (lactone) showed extensive metabolism [intrinsic clearance (CLint) values of 3700 and 7400 µl/min per milligram], whereas the metabolism of the lactones of 2-hydroxyatorvastatin, 4-hydroxyatorvastatin, and pitavastatin was slower (CLint 20-840 µl/min per milligram). The acids had CLint values in the range <0.1-80 µl/min per milligram. In HIMs, only atorvastatin lactone and simvastatin (lactone) exhibited notable metabolism, with CLint values corresponding to 20% of those observed in HLMs. CYP3A4/5 and CYP2C9 were the main statin-metabolizing enzymes. The majority of the acids inhibited HMG-CoA reductase, with 50% inhibitory concentrations of 4-20 nM. The present comparison of the metabolism and pharmacodynamics of the various statins using identical methods provides a strong basis for further application, e.g., comparative systems pharmacology modeling. SIGNIFICANCE STATEMENT: The present comparison of the in vitro metabolic and pharmacodynamic properties of atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin and their metabolites using unified methodology provides a strong basis for further application. Together with in vitro drug transporter and clinical data, the present findings are applicable for use in comparative systems pharmacology modeling to predict the pharmacokinetics and pharmacological effects of statins at different dosages.