Epileptic EEG Classification by Using Time-Frequency Images for Deep Learning

计算机科学 癫痫 脑电图 卷积神经网络 时频分析 人工智能 模式识别(心理学) 深度学习 能量(信号处理) 癫痫发作 数学 统计 神经科学 计算机视觉 滤波器(信号处理) 生物
作者
Mehmet Akif Özdemir,Özlem Karabiber Cura,Aydın Akan
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:31 (08): 2150026-2150026 被引量:86
标识
DOI:10.1142/s012906572150026x
摘要

Epilepsy is one of the most common brain disorders worldwide. The most frequently used clinical tool to detect epileptic events and monitor epilepsy patients is the EEG recordings. There have been proposed many computer-aided diagnosis systems using EEG signals for the detection and prediction of seizures. In this study, a novel method based on Fourier-based Synchrosqueezing Transform (SST), which is a high-resolution time-frequency (TF) representation, and Convolutional Neural Network (CNN) is proposed to detect and predict seizure segments. SST is based on the reassignment of signal components in the TF plane which provides highly localized TF energy distributions. Epileptic seizures cause sudden energy discharges which are well represented in the TF plane by using the SST method. The proposed SST-based CNN method is evaluated using the IKCU dataset we collected, and the publicly available CHB-MIT dataset. Experimental results demonstrate that the proposed approach yields high average segment-based seizure detection precision and accuracy rates for both datasets (IKCU: 98.99% PRE and 99.06% ACC; CHB-MIT: 99.81% PRE and 99.63% ACC). Additionally, SST-based CNN approach provides significantly higher segment-based seizure prediction performance with 98.54% PRE and 97.92% ACC than similar approaches presented in the literature using the CHB-MIT dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
top发布了新的文献求助10
1秒前
1秒前
1秒前
Sebastian完成签到,获得积分10
1秒前
浩二完成签到,获得积分10
1秒前
77发布了新的文献求助10
2秒前
2秒前
2秒前
清脆的傲旋完成签到,获得积分10
2秒前
小送完成签到,获得积分10
3秒前
hejilianglove发布了新的文献求助10
3秒前
温暖静柏完成签到,获得积分20
3秒前
3秒前
蔡徐坤完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
李爱国应助金锐采纳,获得10
5秒前
领导范儿应助繁荣的觅儿采纳,获得10
5秒前
自然的峰单关注了科研通微信公众号
5秒前
浮游应助飘逸的太阳采纳,获得10
5秒前
6秒前
枕安完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
ziyanga发布了新的文献求助10
6秒前
刘大能完成签到,获得积分10
7秒前
zy完成签到,获得积分10
7秒前
乐乐应助牧野牧采纳,获得10
7秒前
7秒前
Stella应助好运莲莲莲采纳,获得10
8秒前
丘比特应助Ccccc采纳,获得10
8秒前
斯文飞雪发布了新的文献求助10
8秒前
科目三应助陶醉眼睛采纳,获得10
8秒前
缓慢的高山应助方宇典采纳,获得10
8秒前
文6发布了新的文献求助10
9秒前
genomed完成签到,获得积分0
10秒前
10秒前
Sunshine发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671