Development of a reactive force field for CaCl2·nH2

雷亚克夫 晶界 Crystal(编程语言) 热导率 材料科学 各向异性 电导率 力场(虚构) 热力学 晶体结构 矿物学 分子动力学 化学 结晶学 复合材料 物理化学 计算化学 原子间势 微观结构 物理 量子力学 程序设计语言 计算机科学
作者
Koen Heijmans,Sophie Nab,Bern Klein Holkenborg,Amar Deep Pathak,Silvia V. Gaastra-Nedea,David Smeulders
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:197: 110595-110595 被引量:12
标识
DOI:10.1016/j.commatsci.2021.110595
摘要

Calcium chloride salt hydrates (CaCl2·nH2O) have a high potential to be used as thermochemical storage material (TCM). However, specific material properties – e.g., slow diffusion, low thermal conductivity, melting temperature, and crystal stability – inhibits further implementation as robust TCM. Inherent bulk crystal defects like cracks, pores, and grain boundaries promoted during the (de) hydration cycle of the TCM, affect these material properties. Reactive force field molecular dynamics (ReaxFF-MD) is used to investigate CaCl2·nH2O (physical and chemical) properties, as well as the effect of crystal defects on them. In this sense, a new ReaxFF force field is developed, which can describe stable CaCl2·nH2O structures, accurate descriptions of crystal surface energies, and multiple material indicators like charges, reaction enthalpies, and radial distribution functions. The new force field is further used to investigate the thermal conductivity, dehydration echanisms/kinetics, and crack formation upon heating of the crystal. The thermal conductivity is found to be 1.1 and 0.5 W/mK for respectively CaCl2 and CaCl2·2H2O, which is in good agreement with experimental results. Additionally, we investigated the influence of grain boundaries and the salts' anisotropic crystal morphology and found that both grain boundaries and the typical layered structure in z-direction lower the thermal conductivity. By investigating dehydration mechanisms, it is shown that initial dehydration is 1.9–2.5 times lower in the z-direction, also due to the typical layered morphology. For all directions, superficial dehydrated CaCl2 layers impede dehydration of core layers, but cracks and pores significantly promote it. These molecular-scale findings reveal nanoscale opportunities that could benefit the TCM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
stark完成签到,获得积分10
1秒前
bkagyin应助轻松靖巧采纳,获得10
1秒前
2秒前
yuchuncheng发布了新的文献求助10
2秒前
LULU酱完成签到 ,获得积分10
2秒前
不倦发布了新的文献求助10
2秒前
顾矜应助何YI采纳,获得10
5秒前
淡淡的大雁完成签到,获得积分10
6秒前
JamesPei应助daijidlka采纳,获得10
6秒前
7秒前
Jasper应助左浩龙采纳,获得10
7秒前
9秒前
9秒前
拾柒完成签到,获得积分10
9秒前
健康的网络完成签到,获得积分10
9秒前
落后的小猫咪完成签到,获得积分10
10秒前
老阎应助pdds采纳,获得20
11秒前
12秒前
12秒前
12秒前
Glorious完成签到,获得积分10
13秒前
月妍关注了科研通微信公众号
13秒前
啊啊啊完成签到,获得积分10
13秒前
完美世界应助shixinran采纳,获得10
13秒前
kk给kk的求助进行了留言
13秒前
橘涂发布了新的文献求助10
13秒前
13秒前
mnjkio163发布了新的文献求助10
14秒前
6666完成签到 ,获得积分20
15秒前
17秒前
哦哦哦发布了新的文献求助10
17秒前
kitsch1984发布了新的文献求助10
17秒前
阿杜阿杜发布了新的文献求助10
18秒前
困就睡觉完成签到 ,获得积分10
19秒前
klyang应助ZENGzeng采纳,获得20
19秒前
19秒前
BLJ完成签到,获得积分10
19秒前
20秒前
FashionBoy应助fff采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5195286
求助须知:如何正确求助?哪些是违规求助? 4377351
关于积分的说明 13632318
捐赠科研通 4232616
什么是DOI,文献DOI怎么找? 2321792
邀请新用户注册赠送积分活动 1319885
关于科研通互助平台的介绍 1270299