Multivariate Time Series Anomaly Detection and Interpretation using Hierarchical Inter-Metric and Temporal Embedding

异常检测 计算机科学 公制(单位) 异常(物理) 自编码 系列(地层学) 多元统计 人工智能 数据挖掘 依赖关系(UML) 嵌入 时间序列 模式识别(心理学) 机器学习 人工神经网络 工程类 物理 生物 古生物学 运营管理 凝聚态物理
作者
Zhihan Li,Youjian Zhao,Jiaqi Han,Ya Su,Rui Jiao,Xidao Wen,Dan Pei
标识
DOI:10.1145/3447548.3467075
摘要

Anomaly detection is a crucial task for monitoring various status (i.e., metrics) of entities (e.g., manufacturing systems and Internet services), which are often characterized by multivariate time series (MTS). In practice, it's important to precisely detect the anomalies, as well as to interpret the detected anomalies through localizing a group of most anomalous metrics, to further assist the failure troubleshooting. In this paper, we propose InterFusion, an unsupervised method that simultaneously models the inter-metric and temporal dependency for MTS. Its core idea is to model the normal patterns inside MTS data through hierarchical Variational AutoEncoder with two stochastic latent variables, each of which learns low-dimensional inter-metric or temporal embeddings. Furthermore, we propose an MCMC-based method to obtain reasonable embeddings and reconstructions at anomalous parts for MTS anomaly interpretation. Our evaluation experiments are conducted on four real-world datasets from different industrial domains (three existing and one newly published dataset collected through our pilot deployment of InterFusion). InterFusion achieves an average anomaly detection F1-Score higher than 0.94 and anomaly interpretation performance of 0.87, significantly outperforming recent state-of-the-art MTS anomaly detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铃旅完成签到,获得积分10
4秒前
sun完成签到,获得积分10
6秒前
dh完成签到,获得积分10
7秒前
7秒前
ll完成签到,获得积分10
10秒前
11秒前
yefeng发布了新的文献求助10
13秒前
14秒前
jioujg发布了新的文献求助10
15秒前
hujialiang完成签到,获得积分10
15秒前
帕芙芙完成签到,获得积分10
16秒前
17秒前
Apollonia发布了新的文献求助20
17秒前
17秒前
vanshaw.vs发布了新的文献求助30
17秒前
邵燚铭完成签到 ,获得积分10
21秒前
23秒前
24秒前
yy发布了新的文献求助10
24秒前
加奶的咖啡完成签到,获得积分10
26秒前
冷静乌完成签到 ,获得积分20
27秒前
一片叶子发布了新的文献求助10
27秒前
28秒前
FashionBoy应助蚊香仔采纳,获得10
29秒前
gttlyb完成签到,获得积分10
31秒前
美味蟹黄堡完成签到,获得积分10
32秒前
32秒前
33秒前
Lucas应助研友_封道天采纳,获得10
33秒前
yy完成签到,获得积分10
34秒前
慕青应助黑釉龙鲤采纳,获得10
35秒前
z123123完成签到,获得积分10
36秒前
小羊爱吃蓝莓完成签到,获得积分10
36秒前
36秒前
lyx发布了新的文献求助10
37秒前
38秒前
欢呼的傲霜完成签到,获得积分10
39秒前
misha991应助tt825采纳,获得30
39秒前
拓跋凝海完成签到,获得积分10
40秒前
wow完成签到,获得积分10
41秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165402
求助须知:如何正确求助?哪些是违规求助? 2816464
关于积分的说明 7912816
捐赠科研通 2476057
什么是DOI,文献DOI怎么找? 1318641
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388