异常检测
计算机科学
公制(单位)
异常(物理)
自编码
系列(地层学)
多元统计
人工智能
数据挖掘
依赖关系(UML)
嵌入
时间序列
模式识别(心理学)
机器学习
人工神经网络
工程类
物理
生物
古生物学
运营管理
凝聚态物理
作者
Zhihan Li,Youjian Zhao,Jiaqi Han,Ya Su,Rui Jiao,Xidao Wen,Dan Pei
标识
DOI:10.1145/3447548.3467075
摘要
Anomaly detection is a crucial task for monitoring various status (i.e., metrics) of entities (e.g., manufacturing systems and Internet services), which are often characterized by multivariate time series (MTS). In practice, it's important to precisely detect the anomalies, as well as to interpret the detected anomalies through localizing a group of most anomalous metrics, to further assist the failure troubleshooting. In this paper, we propose InterFusion, an unsupervised method that simultaneously models the inter-metric and temporal dependency for MTS. Its core idea is to model the normal patterns inside MTS data through hierarchical Variational AutoEncoder with two stochastic latent variables, each of which learns low-dimensional inter-metric or temporal embeddings. Furthermore, we propose an MCMC-based method to obtain reasonable embeddings and reconstructions at anomalous parts for MTS anomaly interpretation. Our evaluation experiments are conducted on four real-world datasets from different industrial domains (three existing and one newly published dataset collected through our pilot deployment of InterFusion). InterFusion achieves an average anomaly detection F1-Score higher than 0.94 and anomaly interpretation performance of 0.87, significantly outperforming recent state-of-the-art MTS anomaly detection methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI