Isorhamnetin is a natural flavonoid widely distributed in fruits and vegetables. However, the roles of isorhamnetin involved in steroidogenesis, proliferation, and apoptosis in ovarian granulosa cells (GCs) are poorly understood. We found that isorhamnetin promoted the secretion of estrogen and inhibited the secretion of progesterone and testosterone by modulating steroidogenesis-associated proteins and mRNA such as CYP19A1, StAR, and 3β-HSD in ovarian GCs. Mechanistically, isorhamnetin stimulated the expression of the proliferating cell nuclear antigen and C-myc and promoted the proliferation of GCs via the PI3K/Akt signaling pathway. Furthermore, isorhamnetin increased the protein expression of CyclinB, CyclinD, CyclinE, and CyclinA, thereby raising the ratio of S-phase cells in response to GC proliferation. Changes in the expression of apoptosis-associated proteins (Bcl2, Bax, and cytochrome c) and intracellular reactive oxygen species levels showed that isorhamnetin inhibited GC apoptosis. Collectively, these findings indicate that isorhamnetin regulates steroidogenesis through the activation of PI3K/Akt, which promotes proliferation, inhibits apoptosis, and alleviates oxidative stress.