Monitoring, analyzing and predicting urban surface subsidence: A case study of Wuhan City, China

干涉合成孔径雷达 下沉 喀斯特 地质学 地下水相关沉降 中国 大地测量学 自然地理学 地貌学 遥感 地理 构造盆地 合成孔径雷达 古生物学 考古
作者
Qing Ding,Zhenfeng Shao,Xiao Huang,Orhan Altan,Qingwei Zhuang,Bin Hu
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:102: 102422-102422 被引量:32
标识
DOI:10.1016/j.jag.2021.102422
摘要

Wuhan, one of China's megacities with rapid development, is facing serious surface subsidence. In this study, we combined MT-InSAR, geo-detector, and LSTM (Long Short-Term Memory) to achieve the monitoring, analysis, and prediction of surface subsidence in the main urban districts of Wuhan. The effectiveness of MT-InSAR in monitoring surface subsidence was validated against leveling results. During the monitoring period, the maximum subsidence velocity and uplift velocity were −53.3 mm/year and 18.0 mm/year, respectively. We identified six subsidence regions and explored their deformation characteristics. Further, we analyzed the relationship between the surface subsidence and influencing factors using the geo-detector in a quantitative manner. Our study revealed that the distance to soft soils had the greatest explanatory power on the subsidence. However, we also confirmed that subsidence was affected via coupling effects from multiple factors, suggesting a complex reinforcing relationship among influencing factors. The interaction between the distance to soft soils and the distance to karst collapse prone areas had the largest joint explanatory power on subsidence. Further, we constructed a data-driven LSTM model to predict and analyze the subsidence. The results showed that the LSTM model achieved great performance and presented strong universality, suggesting that it can be used for subsidence prediction in large geographic areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助小小芮采纳,获得10
刚刚
刚刚
科目三应助ymu采纳,获得10
刚刚
阿良完成签到,获得积分10
刚刚
研友_VZG7GZ应助单纯的一笑采纳,获得10
刚刚
无情凤灵发布了新的文献求助10
刚刚
自觉紫安发布了新的文献求助10
1秒前
眯眯眼的衬衫应助凯露儿采纳,获得10
2秒前
2秒前
szh123完成签到,获得积分10
2秒前
swy完成签到,获得积分10
2秒前
爆米花应助背后勒采纳,获得30
2秒前
3秒前
QYSF222发布了新的文献求助10
3秒前
3秒前
慕青应助小憨瀚采纳,获得10
4秒前
qilin完成签到 ,获得积分20
4秒前
虚幻沁关注了科研通微信公众号
4秒前
蔡tonghui完成签到,获得积分10
4秒前
5秒前
5秒前
agnehc发布了新的文献求助10
6秒前
XX发布了新的文献求助10
6秒前
6秒前
陈晓迪1992完成签到,获得积分10
6秒前
白方明发布了新的文献求助10
6秒前
赘婿应助清雨采纳,获得10
6秒前
yyy完成签到,获得积分10
7秒前
7秒前
隐形曼青应助嘎嘎的鸡神采纳,获得10
7秒前
7秒前
Hello应助Dawn采纳,获得10
7秒前
8秒前
22完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
小美完成签到,获得积分10
9秒前
852应助快乐黑猫采纳,获得10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481440
求助须知:如何正确求助?哪些是违规求助? 3071576
关于积分的说明 9122712
捐赠科研通 2763320
什么是DOI,文献DOI怎么找? 1516389
邀请新用户注册赠送积分活动 701550
科研通“疑难数据库(出版商)”最低求助积分说明 700413