Automated detection of patellofemoral osteoarthritis from knee lateral view radiographs using deep learning: data from the Multicenter Osteoarthritis Study (MOST)

接收机工作特性 沃马克 骨关节炎 医学 射线照相术 深度学习 人工智能 卷积神经网络 体质指数 曲线下面积 放射科 计算机科学 内科学 病理 替代医学
作者
N. Bayramoglu,Miika T. Nieminen,Simo Saarakkala
出处
期刊:Osteoarthritis and Cartilage [Elsevier]
卷期号:29 (10): 1432-1447 被引量:23
标识
DOI:10.1016/j.joca.2021.06.011
摘要

ObjectiveTo assess the ability of imaging-based deep learning to detect radiographic patellofemoral osteoarthritis (PFOA) from knee lateral view radiographs.DesignKnee lateral view radiographs were extracted from The Multicenter Osteoarthritis Study (MOST) public use datasets (n = 18,436 knees). Patellar region-of-interest (ROI) was first automatically detected, and subsequently, end-to-end deep convolutional neural networks (CNNs) were trained and validated to detect the status of patellofemoral OA. Patellar ROI was detected using deep-learning-based object detection method. Atlas-guided visual assessment of PFOA status by expert readers provided in the MOST public use datasets was used as a classification outcome for the models. Performance of classification models was assessed using the area under the receiver operating characteristic curve (ROC AUC) and the average precision (AP) obtained from the Precision-Recall (PR) curve in the stratified 5-fold cross validation setting.ResultsOf the 18,436 knees, 3,425 (19%) had PFOA. AUC and AP for the reference model including age, sex, body mass index (BMI), the total Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and tibiofemoral Kellgren–Lawrence (KL) grade to detect PFOA were 0.806 and 0.478, respectively. The CNN model that used only image data significantly improved the classifier performance (ROC AUC = 0.958, AP = 0.862).ConclusionWe present the first machine learning based automatic PFOA detection method. Furthermore, our deep learning based model trained on patella region from knee lateral view radiographs performs better at detecting PFOA than models based on patient characteristics and clinical assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷家完成签到,获得积分10
刚刚
一所悬命发布了新的文献求助10
刚刚
假面绅士发布了新的文献求助10
刚刚
刚刚
1秒前
wwwww发布了新的文献求助10
1秒前
李健的粉丝团团长应助azj采纳,获得10
3秒前
3秒前
共享精神应助小鱼采纳,获得10
4秒前
4秒前
8R60d8应助yoyo采纳,获得10
5秒前
科研通AI2S应助静谧180采纳,获得10
5秒前
su完成签到,获得积分10
5秒前
CHENXIN532发布了新的文献求助10
6秒前
77777完成签到,获得积分20
6秒前
7秒前
halo发布了新的文献求助10
8秒前
旅途之人发布了新的文献求助10
8秒前
9秒前
11秒前
Cy-coolorgan完成签到,获得积分10
12秒前
ekii发布了新的文献求助10
12秒前
azj发布了新的文献求助10
15秒前
长风发布了新的文献求助30
15秒前
我是老大应助y呓语采纳,获得30
15秒前
整齐冰凡完成签到 ,获得积分10
15秒前
hhh完成签到 ,获得积分10
16秒前
万能图书馆应助旅途之人采纳,获得10
16秒前
ma发布了新的文献求助10
17秒前
17秒前
djf完成签到,获得积分10
17秒前
18秒前
高高ai完成签到,获得积分10
19秒前
上官若男应助zz采纳,获得10
21秒前
21秒前
大大怪发布了新的文献求助10
22秒前
23秒前
迷你的颖完成签到,获得积分10
23秒前
无花果应助ma采纳,获得10
26秒前
王贺发布了新的文献求助200
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141624
求助须知:如何正确求助?哪些是违规求助? 2792563
关于积分的说明 7803506
捐赠科研通 2448811
什么是DOI,文献DOI怎么找? 1302925
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601240