拓扑量子数
干扰(通信)
涡流
卷积神经网络
波前
计算机科学
物理
旋涡
失真(音乐)
拓扑(电路)
角动量
光学
湍流
自由空间光通信
光通信
频道(广播)
人工智能
梁(结构)
电信
量子力学
数学
放大器
组合数学
热力学
带宽(计算)
作者
Xin Fu,Yihua Bai,Yuanjie Yang
出处
期刊:Optical Engineering
[SPIE - International Society for Optical Engineering]
日期:2021-06-30
卷期号:60 (06)
被引量:10
标识
DOI:10.1117/1.oe.60.6.064109
摘要
The atmospheric turbulence can cause wavefront distortion when vortex beam carrying orbital angular momentum (OAM) propagates in free space. This brings challenges to the recognition of OAM modes. To realize effective recognition of multichannel vortex beams in atmospheric turbulence, a hybrid interference-convolutional neural network (CNN) scheme is proposed. Here, we compare two different approaches to identify the topological charges under different turbulence levels: the first is based on CNN only and the second is the hybrid scheme of interference and CNN. The simulation shows that the recognition performance of multiple vortex beams under different turbulence levels is improved by our hybrid scheme. Compared with the traditional CNN-based method, the interference-CNN scheme can further identify the sign of topological charge. Moreover, we generalize its feasibility through different kinds of vortex beams with a radial index of p ≠ 0. This provides a versatile tool for large-capacity optical communication based on OAM modes.
科研通智能强力驱动
Strongly Powered by AbleSci AI