A Long Short-Term Memory Network for Sparse Spatiotemporal EEG Source Imaging

欠定系统 计算机科学 脑电图 人工智能 循环神经网络 反问题 噪音(视频) 模式识别(心理学) 神经影像学 人工神经网络 算法 图像(数学) 神经科学 数学 生物 数学分析
作者
Joyce Chelangat Bore,Peiyang Li,Lin Jiang,Walid M. A. Ayedh,Chunli Chen,Dennis Joe Harmah,Dezhong Yao,Zehong Cao,Peng Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3787-3800 被引量:19
标识
DOI:10.1109/tmi.2021.3097758
摘要

EEG inverse problem is underdetermined, which poses a long standing challenge in Neuroimaging. The combination of source-imaging and analysis of cortical directional networks enables us to noninvasively explore the underlying neural processes. However, existing EEG source imaging approaches mainly focus on performing the direct inverse operation for source estimation, which will be inevitably influenced by noise and the strategy used to find the inverse solution. Here, we develop a new source imaging technique, Deep Brain Neural Network (DeepBraiNNet), for robust sparse spatiotemporal EEG source estimation. In DeepBraiNNet, considering that Recurrent Neural Network (RNN) are usually "deep" in temporal dimension and thus suitable for time sequence modelling, the RNN with Long Short-Term Memory (LSTM) is utilized to approximate the inverse operation for the lead field matrix instead of performing the direct inverse operation, which avoids the possible effect of the direct inverse operation on the underdetermined lead field matrix prone to be influenced by noise. Simulations on various source patterns and noise conditions confirmed that the proposed approach could actually recover the spatiotemporal sources well, outperforming existing state of-the-art methods. DeepBraiNNet also estimated sparse MI related activation patterns when it was applied to a real Motor Imagery dataset, consistent with other findings based on EEG and fMRI. Based on the spatiotemporal sources estimated from DeepBraiNNet, we constructed MI related cortical neural networks, which clearly exhibited strong contralateral network patterns for the two MI tasks. Consequently, DeepBraiNNet may provide an alternative way different from the conventional approaches for spatiotemporal EEG source imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静海菡发布了新的文献求助10
1秒前
犹豫的夏旋完成签到 ,获得积分10
2秒前
健忘的牛排完成签到,获得积分10
3秒前
清脆金鱼完成签到,获得积分10
3秒前
Clover04应助清新的静枫采纳,获得10
4秒前
超级的冰彤完成签到 ,获得积分10
4秒前
MascaraEd发布了新的文献求助10
4秒前
苏卿应助大圆饼子采纳,获得10
4秒前
直率无春完成签到,获得积分10
4秒前
5秒前
Tdlcy给Tdlcy的求助进行了留言
5秒前
wise111发布了新的文献求助30
6秒前
欢欢夏天发布了新的文献求助10
6秒前
9秒前
9秒前
nan完成签到,获得积分10
10秒前
大圆饼子完成签到,获得积分10
11秒前
12秒前
Asma_2104完成签到,获得积分10
12秒前
小蘑菇应助超级的语儿采纳,获得10
14秒前
BLUE完成签到,获得积分10
14秒前
Henry应助lllll123采纳,获得50
15秒前
15秒前
shako完成签到,获得积分10
16秒前
17秒前
荒诞DE谎言完成签到 ,获得积分10
17秒前
干净莆完成签到,获得积分10
18秒前
牛牛发布了新的文献求助10
18秒前
18秒前
情怀应助沉静方盒采纳,获得10
20秒前
Yang完成签到,获得积分10
21秒前
dakdake大可完成签到,获得积分10
22秒前
LLLLXR完成签到,获得积分10
22秒前
23秒前
QIN发布了新的文献求助10
24秒前
Adi完成签到,获得积分10
26秒前
26秒前
27秒前
29秒前
科研通AI2S应助Yang采纳,获得10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155941
求助须知:如何正确求助?哪些是违规求助? 2807235
关于积分的说明 7872173
捐赠科研通 2465563
什么是DOI,文献DOI怎么找? 1312264
科研通“疑难数据库(出版商)”最低求助积分说明 629977
版权声明 601905