亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Impact of Artificial Intelligence on Traditional Chinese Medicine

中医药 人工智能 传统医学 可靠性(半导体) 一致性(知识库) 医学 医学物理学 替代医学 计算机科学 病理 量子力学 物理 功率(物理)
作者
Yulin Wang,Xiuming Shi,Li Li,Thomas Efferth,Dong Shang
出处
期刊:The American Journal of Chinese Medicine [World Scientific]
卷期号:49 (06): 1297-1314 被引量:59
标识
DOI:10.1142/s0192415x21500622
摘要

Traditional Chinese Medicine (TCM) is a well-established medical system with a long history. Currently, artificial intelligence (AI) is rapidly expanding in many fields including TCM. AI will significantly improve the reliability and accuracy of diagnostics, thus increasing the use of effective therapeutic methods for patients. This systematic review provides an updated overview on the major breakthroughs in the field of AI-assisted TCM four diagnostic methods, syndrome differentiation, and treatment. AI-assisted TCM diagnosis is mainly based on digital data collected by modern electronic instruments, which makes TCM diagnosis more quantitative, objective, and standardized. As a result, the diagnosis decisions made by different TCM doctors exhibit more consistency, accuracy, and reliability. Meanwhile, the therapeutic efficacy of TCM can be evaluated objectively. Therefore, AI is promoting TCM from experience to evidence-based medicine, a genuine scientific revolution. Furthermore, huge and non-uniform knowledge on formula-syndrome relationships and the combination rules of herbal TCM formulae could be better standardized with the help of AI analysis, which is necessary for the clinical efficacy evaluation and further optimization on the standardized TCM formulae. AI bridges the gap between TCM and modern science and technology. AI may bring clinical TCM diagnostics closer to western medicine. With the help of AI, more scientific evidence about TCM will be discovered. It can be expected that more unified guidelines for specific TCM syndromes will be issued with the development of AI-assisted TCM therapies in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
20秒前
nicezhutou完成签到 ,获得积分10
20秒前
KH完成签到,获得积分10
21秒前
27秒前
yyr完成签到 ,获得积分10
27秒前
张庆鲁发布了新的文献求助10
33秒前
zheyu完成签到,获得积分10
57秒前
张庆鲁完成签到,获得积分10
57秒前
EricShen完成签到,获得积分10
58秒前
1分钟前
1分钟前
1820发布了新的文献求助10
1分钟前
1820完成签到,获得积分10
1分钟前
MRJJJJ完成签到,获得积分10
1分钟前
洁净如柏完成签到,获得积分10
1分钟前
科研通AI5应助嗨e采纳,获得10
1分钟前
星星boy完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
完美世界应助hulala采纳,获得10
1分钟前
1分钟前
1分钟前
hulala发布了新的文献求助10
2分钟前
科研通AI5应助hulala采纳,获得200
2分钟前
甜甜的紫菜完成签到,获得积分20
2分钟前
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
陈瑶完成签到,获得积分10
2分钟前
无花果应助liza采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
a1发布了新的文献求助10
2分钟前
哈哈哈哈哈完成签到,获得积分10
2分钟前
孙老师完成签到 ,获得积分10
3分钟前
greedyfree发布了新的文献求助10
3分钟前
Johnson完成签到 ,获得积分10
3分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733379
求助须知:如何正确求助?哪些是违规求助? 3277605
关于积分的说明 10003389
捐赠科研通 2993573
什么是DOI,文献DOI怎么找? 1642768
邀请新用户注册赠送积分活动 780623
科研通“疑难数据库(出版商)”最低求助积分说明 748912