Hybrid IPSO-IAGA-BPNN algorithm-based rapid multi-objective optimization of a fully parameterized spaceborne primary mirror

参数化复杂度 粒子群优化 克里金 遗传算法 计算机科学 算法 人工神经网络 人工智能 机器学习
作者
Tao Qin,Junli Guo,Zijian Jing,Peixian Han,Bo Qi
出处
期刊:Applied Optics [The Optical Society]
卷期号:60 (11): 3031-3031 被引量:4
标识
DOI:10.1364/ao.419227
摘要

The surface figure precision, weight, and dynamic performance of spaceborne primary mirrors depend on mirror structure parameters, which are usually optimized to improve the overall performance. To realize rapid multi-objective design optimization of a primary mirror with multiple apertures, a fully parameterized primary mirror structure is established. A surrogate model based on a hybrid of improved particle swarm optimization (IPSO), adaptive genetic algorithm (IAGA), and optimized back propagation neural network (IPSO-IAGA-BPNN) is developed to replace optomechanical simulation with its high computational cost. In this model, a self-adaptive inertia weight and a modified genetic operator are introduced into the particle swarm optimization (PSO) and adaptive genetic algorithm (AGA), respectively. The connection parameters of BPNN are optimized by the IPSO-IAGA algorithm for global searching capability. Further, the proposed IPSO-IAGA-BPNN, based on a rapid multi-objective optimization framework for a fully parameterized primary mirror structure, is established. Moreover, in addition to the proposed IPSO-IAGA-BPNN model, the Kriging, RSM, BPNN, GA-BPNN, PSO-BPNN, and PSO-GA-BPNN models are also analyzed as contrast models. The comparison results indicate that the predicted value obtained by IPSO-IAGA-BPNN is superior to the six other surrogate models since its mean absolute percentage error is less than 3% and its R 2 is more than 0.99. Finally, we present a Pareto-optimal primary mirror design and implement it through three optimization methods. The verification results show that the proposed method predicts mirror structural performance more accurately than existing surrogate-based methods, and promotes significantly superior computational efficiency compared to the conventional integration-based method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
现代的擎苍完成签到,获得积分10
1秒前
Cai发布了新的文献求助10
1秒前
鹿芩发布了新的文献求助10
2秒前
英姑应助lifeboast采纳,获得10
2秒前
思源应助小黄采纳,获得10
2秒前
高兴纸鹤完成签到,获得积分10
2秒前
搞不动科研完成签到,获得积分10
2秒前
wyw123完成签到,获得积分10
2秒前
快乐的柚子完成签到,获得积分10
4秒前
从容的念真完成签到,获得积分10
4秒前
嗯很好完成签到,获得积分20
4秒前
机械腾发布了新的文献求助10
4秒前
Cymatics发布了新的文献求助10
4秒前
舒服的吗喽完成签到 ,获得积分20
4秒前
无敌小汐发布了新的文献求助10
4秒前
大气指甲油完成签到,获得积分10
5秒前
membrane应助成就曼安采纳,获得10
5秒前
开心千青完成签到,获得积分10
6秒前
犹豫的踏歌完成签到,获得积分10
6秒前
fannyeast完成签到,获得积分10
6秒前
椿上春树完成签到,获得积分10
6秒前
sb发布了新的文献求助10
6秒前
LionontheMars完成签到,获得积分10
7秒前
Tina完成签到 ,获得积分10
7秒前
思源应助niuyangyang采纳,获得10
7秒前
愉快的宛儿完成签到,获得积分10
7秒前
江江完成签到,获得积分10
7秒前
May发布了新的文献求助10
8秒前
尘缘完成签到,获得积分10
8秒前
如此纠结完成签到,获得积分10
8秒前
专一的新之完成签到 ,获得积分10
9秒前
彬墩墩完成签到,获得积分10
9秒前
9秒前
大模型应助ling采纳,获得30
10秒前
linxi完成签到,获得积分10
10秒前
无趣养乐多完成签到 ,获得积分10
10秒前
LionontheMars发布了新的文献求助10
10秒前
小盆呐完成签到,获得积分10
11秒前
s6238983完成签到,获得积分10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298999
求助须知:如何正确求助?哪些是违规求助? 2934058
关于积分的说明 8466290
捐赠科研通 2607414
什么是DOI,文献DOI怎么找? 1423664
科研通“疑难数据库(出版商)”最低求助积分说明 661661
邀请新用户注册赠送积分活动 645286