Tuning the solution structure of electrolyte for optimal solid-electrolyte-interphase formation in high-voltage lithium metal batteries

电解质 电化学 法拉第效率 材料科学 相间 锂(药物) X射线光电子能谱 化学工程 快离子导体 电极 化学 物理化学 医学 生物 工程类 遗传学 内分泌学
作者
Juner Chen,Tingyu Liu,Lina Gao,Yumin Qian,Yaqin Liu,Xueqian Kong
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:60: 178-185 被引量:41
标识
DOI:10.1016/j.jechem.2021.01.007
摘要

Abstract The continuous reduction of electrolytes by Li metal leads to a poor lifespan of lithium metal batteries (LMBs). Low Coulombic efficiency (CE) and safety concern due to dendrite growth are the challenging issues for LMB electrolyte design. Novel electrolytes such as highly concentrated electrolytes (HCEs) have been proposed for improving interphase stability. However, this strategy is currently limited for high cost due to the use of a large amount of lithium salts as well as their high viscosity, reduced ion mobility, and poor wettability. In this work, we propose a new type of electrolyte having a moderate concentration. The electrolyte has the advantage of HCEs as the anion is preferentially reduced to form inorganic solid-electrolyte-interphase (SEI). Such optimization has been confirmed through combined spectroscopic and electrochemical characterizations and supported with the first-principle molecular dynamics simulation. We have shown the intrinsic connections between solution structure and their electrochemical stability. The 2.0 M LiDFOB/PC electrolyte, as predicted by our characterizations and simulations, allows stable charge–discharge of LNMO|Li cells at 5C for more than 1500 cycles. The 2.0 M electrolyte generates a dense layer of SEI containing fluoro-oxoborates, Li3BO3, LiF, Li2CO3, and some organic species effectively passivating the lithium metal, as confirmed by electron microscopy, X-ray photoelectron spectroscopy, and solid-state nuclear magnetic resonance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
3秒前
Friday完成签到,获得积分10
4秒前
陈老师耶完成签到,获得积分10
4秒前
彼岸@完成签到,获得积分10
4秒前
小老虎Milly完成签到,获得积分10
5秒前
6秒前
小宋完成签到,获得积分10
7秒前
8秒前
8秒前
税呆呆发布了新的文献求助10
9秒前
10秒前
11秒前
TB发布了新的文献求助10
11秒前
11秒前
12秒前
金平卢仙发布了新的文献求助10
12秒前
MXene应助zqh采纳,获得20
12秒前
13秒前
15秒前
nanashi发布了新的文献求助10
15秒前
李爱国应助失眠海云采纳,获得30
16秒前
在水一方应助球球了采纳,获得10
16秒前
17秒前
17秒前
18秒前
正直冰露发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
文艺代丝完成签到,获得积分20
18秒前
FashionBoy应助精明的期待采纳,获得10
20秒前
杭州007关注了科研通微信公众号
20秒前
20秒前
21秒前
宫宛儿完成签到,获得积分10
22秒前
文艺代丝发布了新的文献求助10
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3574367
求助须知:如何正确求助?哪些是违规求助? 3144080
关于积分的说明 9455303
捐赠科研通 2845630
什么是DOI,文献DOI怎么找? 1564470
邀请新用户注册赠送积分活动 732281
科研通“疑难数据库(出版商)”最低求助积分说明 718991