Artificial neural networks applied to landslide susceptibility: The effect of sampling areas on model capacity for generalization and extrapolation

外推法 山崩 人工神经网络 采样(信号处理) 地形 一般化 仰角(弹道) 反向传播 统计 地图学 数字高程模型 地理 计算机科学 遥感 人工智能 数学 地质学 地貌学 几何学 数学分析 滤波器(信号处理) 计算机视觉
作者
Samuel Gameiro,Eduardo Samuel Riffel,Guilherme Garcia de Oliveira,Laurindo Antônio Guasselli
出处
期刊:Applied Geography [Elsevier]
卷期号:137: 102598-102598 被引量:30
标识
DOI:10.1016/j.apgeog.2021.102598
摘要

Artificial neural networks (ANNs) have been used to identify areas susceptible to landslides and constitute one of the most widely used methods for this purpose. Several factors can interfere in the performance of the models and their resulting maps (especially sampling). This research evaluated the influence of sampling areas on landslide susceptibility modelling and the capacity for generalization and spatial extrapolation of data. Based on an inventory of landslide scars, distributed in five areas of southern Brazil, non-occurrence samples were defined by means of different buffers (2–40 km) in relation to the landslides in order to test the effect of the spatial distribution of the non-occurrence samples on the modeling results. A total of 16 morphometric attributes of the terrain (extracted from a digital elevation model) were used as input variables of the model. Multilayered network training was carried out using a backpropagation algorithm and accuracy was calculated by means of the Area Under the Receiver Operating Characteristic Curve (AUROC). Model accuracy was between 0.739 and 0.931. This variation was explained mainly by the buffer used. The susceptibility map resulting from the model of greater accuracy was obtained with a 40-km buffer in order to collect non-occurrence samples. The great distance between the occurrence and non-occurrence samples facilitates the modelling, since it increases the morphometric differences between the sampling groups. When we used samples from only one of the sample areas, the spatial extrapolation of the susceptibility map to the other areas showed high performance. We conclude that the ANN model for landslides susceptibility mapping can be extrapolated spatially, considering the limits of the geomorphological unit or numerical domain of the data. • We evaluated the influence of sampling areas on landslide susceptibility modelling. • A multilayer artificial neural network was trained using a backpropagation algorithm. • The accuracy of the landslide susceptibility mapping was between 0.739 and 0.931. • The accuracy of LSM increases proportionally to the distance between the occurrence and non-occurrence samples. • The spatial extrapolation of the models was successful, even using landslide polygons from only one sample area. • The ANN model for landslides susceptibility mapping can be extrapolated spatially.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻月饼发布了新的文献求助10
刚刚
wangky应助戴维德采纳,获得10
刚刚
1秒前
1秒前
jeli0404发布了新的文献求助10
1秒前
1秒前
旺仔Mario发布了新的文献求助10
1秒前
吴硫发布了新的文献求助10
1秒前
2秒前
zhangshaoqi发布了新的文献求助10
2秒前
2秒前
耍酷天寿发布了新的文献求助30
2秒前
RyanCao发布了新的文献求助30
2秒前
往复发布了新的文献求助20
3秒前
慕青应助雷家采纳,获得10
3秒前
3秒前
4秒前
秋林发布了新的文献求助10
4秒前
supersparta完成签到,获得积分10
4秒前
liuz53发布了新的文献求助10
4秒前
所所应助cat采纳,获得10
5秒前
5秒前
米老鼠de发布了新的文献求助10
5秒前
yls123发布了新的文献求助10
5秒前
5秒前
5秒前
开心发布了新的文献求助10
6秒前
liwuyan完成签到,获得积分10
6秒前
6秒前
misong完成签到,获得积分10
6秒前
甜甜映菡发布了新的文献求助10
7秒前
搜集达人应助Yuan采纳,获得10
7秒前
8秒前
8秒前
美满文博发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
猫七发布了新的文献求助10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558406
求助须知:如何正确求助?哪些是违规求助? 3133405
关于积分的说明 9401892
捐赠科研通 2833435
什么是DOI,文献DOI怎么找? 1557492
邀请新用户注册赠送积分活动 727385
科研通“疑难数据库(出版商)”最低求助积分说明 716324