High-Accuracy Ranging and Localization With Ultrawideband Communications for Energy-Constrained Devices

测距 非视线传播 计算机科学 能源消耗 能量(信号处理) 功率(物理) 高效能源利用 干扰(通信) 电子工程 实时计算 电信 无线 电气工程 物理 工程类 频道(广播) 量子力学
作者
Laura Flueratoru,Silvan Wehrli,Michele Magno,Elena Simona Lohan,Dragoş Niculescu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (10): 7463-7480 被引量:31
标识
DOI:10.1109/jiot.2021.3125256
摘要

Ultrawideband (UWB) communications have gained popularity in recent years for being able to provide distance measurements and localization with high accuracy, which can enhance the capabilities of devices in the Internet of Things (IoT). Since energy efficiency is of utmost concern in such applications, in this work, we evaluate the power and energy consumption, distance measurements, and localization performance of two types of UWB physical interfaces (PHYs), which use either a low- or high-rate pulse repetition (LRP and HRP, respectively). The evaluation is done through measurements acquired in identical conditions, which is crucial in order to have a fair comparison between the devices. We performed measurements in typical line-of-sight (LOS) and nonline-of-sight (NLOS) scenarios. Our results suggest that the LRP interface allows a lower power and energy consumption than the HRP one. Both types of devices achieved ranging and localization errors within the same order of magnitude and their performance depended on the type of NLOS obstruction. We propose theoretical models for the distance errors obtained with LRP devices in these situations, which can be used to simulate realistic building deployments and we illustrate such an example. This article, therefore, provides a comprehensive overview of the energy demands, ranging characteristics, and localization performance of state-of-the-art UWB devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
和谐乌龟发布了新的文献求助10
1秒前
zZ完成签到,获得积分10
1秒前
科研小白完成签到,获得积分10
1秒前
LYY发布了新的文献求助10
2秒前
wangfu完成签到,获得积分10
2秒前
ding应助Dddd采纳,获得10
3秒前
yin发布了新的文献求助10
3秒前
大模型应助张张采纳,获得10
3秒前
Akim应助吾问无为谓采纳,获得10
4秒前
4秒前
神勇的冰姬完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
tony完成签到,获得积分10
7秒前
Uynaux发布了新的文献求助30
7秒前
SONG完成签到,获得积分10
7秒前
SYLH应助干秋白采纳,获得10
8秒前
8秒前
风雨1210发布了新的文献求助10
9秒前
文艺书雪完成签到 ,获得积分10
9秒前
独行侠完成签到,获得积分10
9秒前
10秒前
我测你码发布了新的文献求助10
10秒前
又要起名字完成签到,获得积分10
10秒前
10秒前
10秒前
damian完成签到,获得积分10
11秒前
LiShin发布了新的文献求助10
11秒前
渝州人应助凤凰山采纳,获得10
12秒前
sweetbearm应助凤凰山采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
yizhiGao应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
顾矜应助随机起的名采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794