材料科学
多硫化物
石墨烯
电解质
阴极
纳米片
氧化物
锂硫电池
表面改性
硫黄
化学工程
纳米材料
分离器(采油)
纳米技术
锂(药物)
化学
电极
物理化学
内分泌学
工程类
冶金
热力学
医学
物理
作者
Sanghee Nam,Jaehwan Kim,Van Hiep Nguyen,Manmatha Mahato,Saewoong Oh,Pitchai Thangasamy,Chi Won Ahn,Il‐Kwon Oh
标识
DOI:10.1002/admt.202101025
摘要
Abstract The shuttling effect of lithium polysulfide (LiPS), which leads to the gravest capacity degradation, is one of the critical problems to hindering the commercialization of lithium–sulfur batteries (LSBs). Here, collectively exhaustive Ti 3 C 2 T x MXene and graphene oxide (GO) multilayers are reported to suppress the shuttling effect by utilizing both physical inhibition of micro/mesoporous and chemical absorption of surface functional groups. The abundant surface functional groups of GO and MXene attract the positively charged lithium ion (Li + ) and eject the negatively charged polysulfides (S n 2– ) through electrostatic affinity and repulsion. A simple approach using vacuum filtration is utilized to encapsulate elemental sulfur (S 8 ) between GO and MXene film (GSM), acting as a permselective separator and functionalized current collector, respectively. The functionally antagonistic GSM directly plays a role in a cathode for LSBs and exhibits a specific capacity of 1425 mAh g –1 at 0.1C in the initial cycle. The abundant functional groups, which can chemisorb the LiPSs, result in a high cyclic retention of ≈85.1% after 500 cycles. Furthermore, a flexible LSB is demonstrated with a PEO‐LiTFSI electrolyte based on the flexibility of the exceptionally thin GSM due to the 2D nanomaterials, MXene and graphene oxide.
科研通智能强力驱动
Strongly Powered by AbleSci AI