Improved faster R-CNN for fabric defect detection based on Gabor filter with Genetic Algorithm optimization

Gabor滤波器 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 遗传算法 嵌入 滤波器(信号处理) 算法 干扰(通信) 小波 计算机视觉 频道(广播) 图像(数学) 机器学习 小波变换 小波 离散小波变换 计算机网络
作者
Mengqi Chen,Lingjie Yu,Chao Zhi,Runjun Sun,Shuangwu Zhu,Zhongyuan Gao,Zhenxia Ke,Mengqiu Zhu,Yuming Zhang
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:134: 103551-103551 被引量:166
标识
DOI:10.1016/j.compind.2021.103551
摘要

Fabric defect detection plays a crucial role in fabric inspection and quality control. Convolutional neural networks (CNNs)-based model has been proved successful in various defect inspection applications. However, the sophisticated background texture is still a challenging task for fabric defect detection. To address the texture interference problem, taking advantage of Gabor filter in frequency analysis, we improved the Faster Region-based Convolutional Neural Network (Faster R-CNN) model by embedding Gabor kernels into Faster R-CNN, termed the Genetic Algorithm Gabor Faster R-CNN (Faster GG R-CNN); in addition, a two-stage training method based on Genetic Algorithm (GA) and back-propagation was designed to train the new Faster GG R-CNN model; finally, extensive experimental validations were conducted to evaluate the proposed model. The experimental results show that the proposed Faster GG R-CNN model outperforms the typical Faster R-CNN model in terms of accuracy. The proposed method’ mean average precision (mAP) is 94.57%, compared to 78.98% with the Faster R-CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得30
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
liangeven发布了新的文献求助10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
慕青应助七七采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
flance应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得30
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
dengqin发布了新的文献求助10
1秒前
我是老大应助猪猪hero采纳,获得10
1秒前
鲸落完成签到,获得积分10
2秒前
小李同学完成签到,获得积分10
2秒前
小羊123发布了新的文献求助10
2秒前
2秒前
卷卷完成签到,获得积分10
3秒前
z123完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
彭于晏应助一两风采纳,获得10
6秒前
LyAnZ发布了新的文献求助10
6秒前
6秒前
6秒前
ddl完成签到,获得积分10
7秒前
7秒前
桐桐应助小羊123采纳,获得10
7秒前
刘少山发布了新的文献求助10
8秒前
aylwtt完成签到,获得积分10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958492
求助须知:如何正确求助?哪些是违规求助? 3504758
关于积分的说明 11120028
捐赠科研通 3236093
什么是DOI,文献DOI怎么找? 1788616
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802625