Experimental and numerical study on Cu and Cd migration in different functional-area soils under simulated rainfall conditions

土壤水分 环境科学 地下水 土壤科学 污染 环境化学 水文学(农业) 环境工程 化学 生态学 地质学 岩土工程 生物
作者
Yanyong Ye,Yanpeng Li,Zhaolin Cao,Siyu Liu,Yan Zhao
出处
期刊:Environmental Research [Elsevier]
卷期号:208: 112239-112239 被引量:29
标识
DOI:10.1016/j.envres.2021.112239
摘要

Natural rainfall exerts a significant influence on the migration of heavy metals in soil. However, the knowledge of migration characteristics and release kinetics of heavy metals in contaminated soils under different rainfall intensities still remains unclear. In this study, the simulated rainfall of different intensities was designed to experimentally and numerically investigate Cu and Cd movements in different functional-area (agriculture, industrial, urban) soils. A HYDRUS-2D model was optimized to simulate the migration process of Cu and Cd in soil under different rainfall conditions. The hydraulic properties and solute transport parameters used in the model were estimated based on isothermal adsorption and chloride ion penetration experimental measurements and related model fitting. Furthermore, Cu and Cd BTCs (Breakthrough Curves) were fitted using the HYDRUS-2D inverse solution function with two-site model. The results showed that the order of the migration capacity of Cu and Cd in different functional-area soils was agriculture soil > industrial soil > urban soil, and Cd had a greater risk of groundwater pollution than Cu. With the increase of rainfall intensity, the high proportion of the exchangeable state of Cu and Cd in contaminated soil is easy to be released. Furthermore, the model was proved to describe the distribution of Cu and Cd in the soil profile very well. The present results can improve understanding of the environmental behavior of Cu and Cd in different functional-areas soils and can be used as a basis for risk assessment of Cu and Cd polluting groundwater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助佳佳采纳,获得10
刚刚
科研通AI5应助润润轩轩采纳,获得10
刚刚
刚刚
Orange应助w.h采纳,获得10
1秒前
稳重的安萱完成签到,获得积分10
1秒前
2秒前
Owen应助马静雨采纳,获得10
3秒前
3秒前
吴岳发布了新的文献求助10
4秒前
XHT完成签到,获得积分10
4秒前
Martin完成签到 ,获得积分10
5秒前
花花完成签到,获得积分10
5秒前
5秒前
Khr1stINK发布了新的文献求助10
6秒前
李繁蕊发布了新的文献求助10
6秒前
科研通AI2S应助灵巧荆采纳,获得10
8秒前
尼古拉斯二狗蛋完成签到,获得积分10
8秒前
SCI发布了新的文献求助10
8秒前
8秒前
8秒前
畅快的谷梦完成签到,获得积分10
8秒前
8秒前
猪猪hero发布了新的文献求助10
9秒前
...完成签到,获得积分10
9秒前
9秒前
pluto应助Frank采纳,获得10
10秒前
三磷酸腺苷完成签到 ,获得积分10
10秒前
10秒前
请叫我风吹麦浪应助jbhb采纳,获得10
10秒前
10秒前
小李叭叭完成签到,获得积分10
11秒前
打打应助LiShin采纳,获得10
12秒前
12秒前
Orange应助luuuuuu采纳,获得10
13秒前
13秒前
个性的大地完成签到,获得积分10
14秒前
kawayifenm完成签到,获得积分10
14秒前
lxh2424发布了新的文献求助30
14秒前
Rezeal完成签到 ,获得积分10
14秒前
w.h发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794