Associations between prenatal multiple metal exposure and preterm birth: Comparison of four statistical models

逻辑回归 医学 线性回归 混淆 人口 内科学 统计 数学 环境卫生
作者
Juan Liu,Fengyu Ruan,Shuting Cao,Yuanyuan Li,Shunqing Xu,Wei Xia
出处
期刊:Chemosphere [Elsevier]
卷期号:289: 133015-133015 被引量:18
标识
DOI:10.1016/j.chemosphere.2021.133015
摘要

Exposure to some heavy metals has been demonstrated to be related to the risk of preterm birth (PTB). However, the effects of multi-metal mixture are seldom assessed. Thus, we aimed to investigate the associations of maternal exposure to metal mixture with PTB, and to identify the main contributors to PTB from the mixture.The population in the nested case-control study was from a prospective cohort enrolled in Wuhan, China between 2012 and 2014. Eighteen metals were measured in maternal urine collected before delivery. Logistic regression, elastic net regularization (ENET), weighted quantile sum regression (WQSR), and Bayesian kernel machine regression (BKMR) were used to estimate the overall effect and identify important mixture components that drive the associations with PTB.Logistic regression found naturally log-transformed concentrations of 13 metals were positively associated with PTB after adjusting for the covariates, and only V, Zn, and Cr remained the significantly positive associations when additionally adjusting for the 13 metals together. ENET identified 11 important metals for PTB, and V (β = 0.23) had the strongest association. WQSR determined the positive combined effect of metal mixture on PTB (OR: 1.44, 95%CI: 1.32, 1.57), and selected Cr and V (weighted 0.41 and 0.32, respectively) as the most weighted metals. BKMR analysis confirmed the overall mixture was positively associated with PTB, and the independent effect of V was the most significant. Besides, BKMR showed the non-linear relationships of V and Cu with PTB, and the potential interaction between Zn and Cu.Applying different statistical models, the study found that exposure to the metal mixture was associated with a higher risk of PTB, and V was identified as the most important risk factor among co-exposed metals for PTB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spring完成签到 ,获得积分10
刚刚
1秒前
Kung完成签到 ,获得积分10
1秒前
动听的代曼完成签到,获得积分10
1秒前
1秒前
包容的幻梅完成签到,获得积分20
1秒前
勇敢肥猫完成签到,获得积分10
1秒前
YAN发布了新的文献求助50
1秒前
完美世界应助圈圈采纳,获得10
2秒前
时尚的蚂蚁完成签到,获得积分10
2秒前
流年完成签到 ,获得积分10
2秒前
MADKAI发布了新的文献求助10
2秒前
xunxunmimi完成签到,获得积分10
3秒前
3秒前
3秒前
刘星星发布了新的文献求助10
4秒前
CodeCraft应助科研菜鸟采纳,获得20
4秒前
zyyyyyyyyyyy完成签到,获得积分10
5秒前
6秒前
研友_8yN60L发布了新的文献求助30
6秒前
打打应助柳七采纳,获得10
7秒前
零零二完成签到 ,获得积分10
7秒前
韭菜盒子发布了新的文献求助10
8秒前
Maestro_S完成签到,获得积分0
8秒前
volzzz发布了新的文献求助10
8秒前
wgglegg完成签到,获得积分10
8秒前
科研通AI5应助小胖鱼采纳,获得10
8秒前
酷波er应助黄超采纳,获得10
8秒前
8秒前
大智若愚啊完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
彬彬发布了新的文献求助10
9秒前
健壮丹妗完成签到 ,获得积分10
9秒前
Orange应助铸一字错采纳,获得10
9秒前
9秒前
Accept应助阿烨采纳,获得10
11秒前
欧阳小枫发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740