Associations between prenatal multiple metal exposure and preterm birth: Comparison of four statistical models

逻辑回归 医学 线性回归 混淆 人口 内科学 统计 数学 环境卫生
作者
Juan Liu,Fengyu Ruan,Shuting Cao,Yuanyuan Li,Shunqing Xu,Wei Xia
出处
期刊:Chemosphere [Elsevier BV]
卷期号:289: 133015-133015 被引量:21
标识
DOI:10.1016/j.chemosphere.2021.133015
摘要

Exposure to some heavy metals has been demonstrated to be related to the risk of preterm birth (PTB). However, the effects of multi-metal mixture are seldom assessed. Thus, we aimed to investigate the associations of maternal exposure to metal mixture with PTB, and to identify the main contributors to PTB from the mixture.The population in the nested case-control study was from a prospective cohort enrolled in Wuhan, China between 2012 and 2014. Eighteen metals were measured in maternal urine collected before delivery. Logistic regression, elastic net regularization (ENET), weighted quantile sum regression (WQSR), and Bayesian kernel machine regression (BKMR) were used to estimate the overall effect and identify important mixture components that drive the associations with PTB.Logistic regression found naturally log-transformed concentrations of 13 metals were positively associated with PTB after adjusting for the covariates, and only V, Zn, and Cr remained the significantly positive associations when additionally adjusting for the 13 metals together. ENET identified 11 important metals for PTB, and V (β = 0.23) had the strongest association. WQSR determined the positive combined effect of metal mixture on PTB (OR: 1.44, 95%CI: 1.32, 1.57), and selected Cr and V (weighted 0.41 and 0.32, respectively) as the most weighted metals. BKMR analysis confirmed the overall mixture was positively associated with PTB, and the independent effect of V was the most significant. Besides, BKMR showed the non-linear relationships of V and Cu with PTB, and the potential interaction between Zn and Cu.Applying different statistical models, the study found that exposure to the metal mixture was associated with a higher risk of PTB, and V was identified as the most important risk factor among co-exposed metals for PTB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娟娟完成签到 ,获得积分10
刚刚
gladuhere完成签到 ,获得积分10
1秒前
王宣龙发布了新的文献求助40
1秒前
研友_VZG7GZ应助踏实的12采纳,获得10
5秒前
JG完成签到 ,获得积分10
6秒前
Jaden完成签到,获得积分10
8秒前
ZZzz完成签到 ,获得积分10
9秒前
博弈完成签到 ,获得积分10
15秒前
17秒前
ilk666完成签到,获得积分10
20秒前
大气夜山完成签到 ,获得积分10
21秒前
caohuijun发布了新的文献求助10
21秒前
逢场作戱__完成签到 ,获得积分10
21秒前
努力学习ing完成签到 ,获得积分10
23秒前
WangJL完成签到 ,获得积分10
24秒前
温暖完成签到 ,获得积分10
25秒前
HCT完成签到,获得积分10
26秒前
丽莉完成签到,获得积分20
27秒前
小巧的语儿完成签到 ,获得积分10
29秒前
蒸馏水完成签到,获得积分10
30秒前
tong完成签到,获得积分10
32秒前
leaolf完成签到,获得积分0
34秒前
许晴完成签到 ,获得积分10
36秒前
笑点低的项链完成签到 ,获得积分10
39秒前
Dong完成签到 ,获得积分10
39秒前
猕猴桃完成签到 ,获得积分10
41秒前
兔兔完成签到 ,获得积分10
44秒前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
脑洞疼应助Tinadai123456采纳,获得10
1分钟前
豆豆完成签到,获得积分10
1分钟前
bill完成签到,获得积分10
1分钟前
妇产科医生完成签到 ,获得积分10
1分钟前
Jayzie完成签到 ,获得积分10
1分钟前
HLT完成签到 ,获得积分10
1分钟前
1分钟前
怕孤单的羊完成签到 ,获得积分10
1分钟前
xfy完成签到,获得积分10
1分钟前
Tinadai123456发布了新的文献求助10
1分钟前
00完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570320
求助须知:如何正确求助?哪些是违规求助? 3991993
关于积分的说明 12356573
捐赠科研通 3664572
什么是DOI,文献DOI怎么找? 2019606
邀请新用户注册赠送积分活动 1054071
科研通“疑难数据库(出版商)”最低求助积分说明 941622