An optimal selection method for debris flow scene symbols considering public cognition differences

作者
Weilian Li,Jun Zhu,Yuhang Gong,Qing Zhu,Bingli Xu,Min Chen
出处
期刊:International journal of disaster risk reduction [Elsevier BV]
卷期号:: 102698-
标识
DOI:10.1016/j.ijdrr.2021.102698
摘要

Abstract Disaster scene symbols can reduce memory and cognitive burdens and improve the transmission efficiency of debris flow information. There is no unified standard for disaster scene symbols, although many academic institutions and emergency departments have thoroughly studied debris flow disasters. Instead, many disaster scene symbols of different styles interfere with the public's understanding of disaster information. Here, an optimal selection method for debris flow scene symbols considering public cognition differences is proposed. First, public knowledge is incorporated into the fuzzy analytic hierarchy process (FAHP) model for debris flow scene symbol selection. Second, debris flows are visualized in 3D with a virtual geographic environment (VGE). Finally, a real debris flow is selected for experimental analysis. The proposed method can support the optimal selection of debris flow scene symbols considering public cognition differences, and a 3D scene constructed with the selected symbols can improve the transmission efficiency of disaster information and provide support for public-oriented debris flow information services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助森林木采纳,获得10
刚刚
Q_Q完成签到,获得积分10
刚刚
刚刚
葫芦芦芦完成签到 ,获得积分10
1秒前
鳗鱼中心完成签到,获得积分10
2秒前
娟儿完成签到 ,获得积分10
3秒前
tomato发布了新的文献求助10
3秒前
CodeCraft应助狄如波采纳,获得10
4秒前
4秒前
沉默南露发布了新的文献求助30
4秒前
4秒前
wy.he举报Joshi79求助涉嫌违规
4秒前
JamesPei应助科研通管家采纳,获得10
5秒前
优秀猫咪应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
鬼笔环肽应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
fw应助科研通管家采纳,获得30
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
whatever应助科研通管家采纳,获得20
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
zcl应助科研通管家采纳,获得20
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
苗条白枫完成签到 ,获得积分10
6秒前
燕儿应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得20
6秒前
思源应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
7秒前
852应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919523
求助须知:如何正确求助?哪些是违规求助? 4191525
关于积分的说明 13017765
捐赠科研通 3961750
什么是DOI,文献DOI怎么找? 2171859
邀请新用户注册赠送积分活动 1189763
关于科研通互助平台的介绍 1098406