环境科学
分水岭
地表径流
覆盖作物
硝酸盐
农业
磷
水文学(农业)
水质
农学
播种
瓷砖排水
土壤水分
农林复合经营
生态学
土壤科学
生物
化学
工程类
有机化学
岩土工程
机器学习
计算机科学
作者
Shannon L. Speir,Jennifer L. Tank,Matt T. Trentman,Ursula H. Mahl,Lienne R. Sethna,Brittany R. Hanrahan,Todd V. Royer
标识
DOI:10.1016/j.agee.2021.107765
摘要
Environmental impacts on freshwater ecosystems persist due to inputs of excess fertilizer to agricultural landscapes. Conservation efforts, such as cover crops, are being encouraged to reduce nitrogen (N) and phosphorus (P) runoff from fields, but their effects on working lands are rarely documented. We quantified reductions of nitrate-N and soluble reactive phosphorus (SRP) losses from cropland in response to widespread planting of cover crops in two agricultural watersheds (Indiana, USA) over four water years (2016–2019). We collected water samples bimonthly from tile drains and stream sites to measure nitrate-N and SRP losses across scales. Cover crops consistently reduced tile drain nitrate-N loss by 27–72%, while SRP reductions were more variable, ranging from 7%–58%. Subwatershed nitrate-N yields were consistent across each watershed, while headwaters disproportionately contributed SRP to the stream, suggesting targeted cover crop implementation may be required to reduce SRP export. Finally, watershed-scale nitrate-N export was reduced by 2–67% (5/8 site-years) and SRP export by 31–88% (7/8 site-years) in spring. However, given the effect of interannual variability in runoff and spatial heterogeneity in N and P loading, regional-scale planting of cover crops may be needed to confer consistent reductions in annual export, with meaningful impacts on downstream water quality.
科研通智能强力驱动
Strongly Powered by AbleSci AI