Research on Differential Brain Networks before and after WM Training under Different Frequency Band Oscillations

神经科学 差速器(机械装置) 听力学 心理学 医学 物理 热力学
作者
Yin Tian,Huishu Zhou,Huiling Zhang,Tianhao Li
出处
期刊:Neural Plasticity [Hindawi Limited]
卷期号:2021: 1-12 被引量:8
标识
DOI:10.1155/2021/6628021
摘要

Previous studies have shown that different frequency band oscillations are associated with cognitive processing such as working memory (WM). Electroencephalogram (EEG) coherence and graph theory can be used to measure functional connections between different brain regions and information interaction between different clusters of neurons. At the same time, it was found that better cognitive performance of individuals indicated stronger small-world characteristics of resting-state WM networks. However, little is known about the neural synchronization of the retention stage during ongoing WM tasks (i.e., online WM) by training on the whole-brain network level. Therefore, combining EEG coherence and graph theory analysis, the present study examined the topological changes of WM networks before and after training based on the whole brain and constructed differential networks with different frequency band oscillations (i.e., theta, alpha, and beta). The results showed that after WM training, the subjects' WM networks had higher clustering coefficients and shorter optimal path lengths than before training during the retention period. Moreover, the increased synchronization of the frontal theta oscillations seemed to reflect the improved executive ability of WM and the more mature resource deployment; the enhanced alpha oscillatory synchronization in the frontoparietal and fronto-occipital regions may reflect the enhanced ability to suppress irrelevant information during the delay and pay attention to memory guidance; the enhanced beta oscillatory synchronization in the temporoparietal and frontoparietal regions may indicate active memory maintenance and preparation for memory-guided attention. The findings may add new evidence to understand the neural mechanisms of WM on the changes of network topological attributes in the task-related mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
xl完成签到,获得积分10
3秒前
科研通AI2S应助淡淡丹妗采纳,获得10
3秒前
HUYAOWEI发布了新的文献求助10
4秒前
聪明完成签到 ,获得积分10
5秒前
cyh完成签到,获得积分10
6秒前
vvvvvv完成签到,获得积分10
7秒前
Georges-09完成签到,获得积分10
7秒前
vergil完成签到,获得积分10
10秒前
碳酸氢钠完成签到,获得积分10
10秒前
叶子完成签到,获得积分0
12秒前
ID27149完成签到,获得积分10
12秒前
搬砖的化学男完成签到 ,获得积分0
12秒前
jingjing完成签到 ,获得积分10
13秒前
Hello应助自觉夏彤采纳,获得30
14秒前
213给213的求助进行了留言
14秒前
hjm发布了新的文献求助10
15秒前
魔术师完成签到,获得积分10
16秒前
chen完成签到 ,获得积分10
17秒前
MAVS完成签到,获得积分10
17秒前
文静灵阳完成签到 ,获得积分10
18秒前
王立辉发布了新的文献求助20
19秒前
wxyshare应助HUYAOWEI采纳,获得10
19秒前
搜集达人应助HUYAOWEI采纳,获得10
19秒前
情怀应助HUYAOWEI采纳,获得10
19秒前
20秒前
哎哟大侠完成签到,获得积分10
21秒前
爱玛爱玛完成签到 ,获得积分10
22秒前
喷香大蒜瓣完成签到,获得积分10
22秒前
lcjynwe完成签到,获得积分10
24秒前
Orange应助舒服的忆南采纳,获得10
24秒前
24秒前
知性的觅露完成签到,获得积分10
24秒前
25秒前
静心完成签到,获得积分10
25秒前
哎哟大侠发布了新的文献求助10
26秒前
wanci应助独特乘云采纳,获得10
27秒前
胡子木完成签到,获得积分10
28秒前
冰旋完成签到,获得积分20
29秒前
水水完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600022
求助须知:如何正确求助?哪些是违规求助? 4685803
关于积分的说明 14839504
捐赠科研通 4674748
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505640
关于科研通互助平台的介绍 1471109