亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on Differential Brain Networks before and after WM Training under Different Frequency Band Oscillations

神经科学 差速器(机械装置) 听力学 心理学 医学 物理 热力学
作者
Yin Tian,Huishu Zhou,Huiling Zhang,Tianhao Li
出处
期刊:Neural Plasticity [Hindawi Limited]
卷期号:2021: 1-12 被引量:8
标识
DOI:10.1155/2021/6628021
摘要

Previous studies have shown that different frequency band oscillations are associated with cognitive processing such as working memory (WM). Electroencephalogram (EEG) coherence and graph theory can be used to measure functional connections between different brain regions and information interaction between different clusters of neurons. At the same time, it was found that better cognitive performance of individuals indicated stronger small-world characteristics of resting-state WM networks. However, little is known about the neural synchronization of the retention stage during ongoing WM tasks (i.e., online WM) by training on the whole-brain network level. Therefore, combining EEG coherence and graph theory analysis, the present study examined the topological changes of WM networks before and after training based on the whole brain and constructed differential networks with different frequency band oscillations (i.e., theta, alpha, and beta). The results showed that after WM training, the subjects' WM networks had higher clustering coefficients and shorter optimal path lengths than before training during the retention period. Moreover, the increased synchronization of the frontal theta oscillations seemed to reflect the improved executive ability of WM and the more mature resource deployment; the enhanced alpha oscillatory synchronization in the frontoparietal and fronto-occipital regions may reflect the enhanced ability to suppress irrelevant information during the delay and pay attention to memory guidance; the enhanced beta oscillatory synchronization in the temporoparietal and frontoparietal regions may indicate active memory maintenance and preparation for memory-guided attention. The findings may add new evidence to understand the neural mechanisms of WM on the changes of network topological attributes in the task-related mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
zh完成签到,获得积分20
7秒前
yaoguozhikkk完成签到,获得积分20
10秒前
科研小新发布了新的文献求助10
11秒前
Marciu33发布了新的文献求助10
12秒前
yaoguozhikkk发布了新的文献求助10
13秒前
小支完成签到 ,获得积分10
14秒前
Hello应助Man采纳,获得10
18秒前
Raunio完成签到,获得积分10
20秒前
只如初完成签到 ,获得积分10
21秒前
隐形曼青应助科研小新采纳,获得10
23秒前
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
25秒前
keeeeeeeli完成签到,获得积分10
25秒前
科研通AI6应助yaoguozhikkk采纳,获得10
30秒前
CipherSage应助buena采纳,获得10
31秒前
32秒前
32秒前
shuhaha完成签到,获得积分10
33秒前
天天快乐应助基根豹采纳,获得10
34秒前
唐静发布了新的文献求助10
36秒前
小马甲应助yyyy采纳,获得10
37秒前
天天快乐应助传统的戎采纳,获得10
37秒前
zh完成签到,获得积分10
40秒前
shyx完成签到 ,获得积分10
47秒前
49秒前
lanser完成签到,获得积分10
52秒前
52秒前
bkagyin应助唐静采纳,获得10
55秒前
55秒前
传统的戎发布了新的文献求助10
59秒前
buena发布了新的文献求助10
59秒前
1分钟前
111完成签到,获得积分10
1分钟前
1分钟前
尤其完成签到,获得积分10
1分钟前
小唐完成签到,获得积分10
1分钟前
动听的向秋完成签到,获得积分10
1分钟前
卧镁铀钳完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650563
求助须知:如何正确求助?哪些是违规求助? 4781019
关于积分的说明 15052302
捐赠科研通 4809466
什么是DOI,文献DOI怎么找? 2572282
邀请新用户注册赠送积分活动 1528450
关于科研通互助平台的介绍 1487286