Research on Differential Brain Networks before and after WM Training under Different Frequency Band Oscillations

神经科学 差速器(机械装置) 听力学 心理学 医学 物理 热力学
作者
Yin Tian,Huishu Zhou,Huiling Zhang,Tianhao Li
出处
期刊:Neural Plasticity [Hindawi Publishing Corporation]
卷期号:2021: 1-12 被引量:8
标识
DOI:10.1155/2021/6628021
摘要

Previous studies have shown that different frequency band oscillations are associated with cognitive processing such as working memory (WM). Electroencephalogram (EEG) coherence and graph theory can be used to measure functional connections between different brain regions and information interaction between different clusters of neurons. At the same time, it was found that better cognitive performance of individuals indicated stronger small-world characteristics of resting-state WM networks. However, little is known about the neural synchronization of the retention stage during ongoing WM tasks (i.e., online WM) by training on the whole-brain network level. Therefore, combining EEG coherence and graph theory analysis, the present study examined the topological changes of WM networks before and after training based on the whole brain and constructed differential networks with different frequency band oscillations (i.e., theta, alpha, and beta). The results showed that after WM training, the subjects' WM networks had higher clustering coefficients and shorter optimal path lengths than before training during the retention period. Moreover, the increased synchronization of the frontal theta oscillations seemed to reflect the improved executive ability of WM and the more mature resource deployment; the enhanced alpha oscillatory synchronization in the frontoparietal and fronto-occipital regions may reflect the enhanced ability to suppress irrelevant information during the delay and pay attention to memory guidance; the enhanced beta oscillatory synchronization in the temporoparietal and frontoparietal regions may indicate active memory maintenance and preparation for memory-guided attention. The findings may add new evidence to understand the neural mechanisms of WM on the changes of network topological attributes in the task-related mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyn驳回了田様应助
刚刚
可爱的函函应助zhan采纳,获得10
1秒前
alexa完成签到,获得积分10
2秒前
踏实的火龙果完成签到 ,获得积分10
4秒前
5秒前
河豚不擦鞋完成签到 ,获得积分10
5秒前
小马甲应助小宝爸爸采纳,获得10
7秒前
8秒前
9秒前
张雷应助优雅的涵瑶采纳,获得20
10秒前
xixi完成签到,获得积分10
10秒前
JazzWon完成签到,获得积分10
10秒前
11秒前
jor666发布了新的文献求助10
12秒前
启点发布了新的文献求助10
12秒前
12秒前
drzz完成签到,获得积分10
15秒前
18秒前
一颗好困芽完成签到 ,获得积分10
18秒前
Sky发布了新的文献求助10
18秒前
18秒前
打打应助feiying88采纳,获得10
21秒前
23秒前
pingpinglver发布了新的文献求助10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
kecheng应助科研通管家采纳,获得30
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
SHAO应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
阔达紫青应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
yookia应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
英姑应助科研通管家采纳,获得10
24秒前
cdercder应助科研通管家采纳,获得20
24秒前
jenningseastera应助圆你心安采纳,获得10
24秒前
25秒前
kk子发布了新的文献求助10
25秒前
丽莫莫完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991883
求助须知:如何正确求助?哪些是违规求助? 3533014
关于积分的说明 11260344
捐赠科研通 3272297
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425