Dissolved oxygen concentration predictions for running waters with different land use land cover using a quantile regression forest machine learning technique

水质 环境科学 土地覆盖 预测建模 分位数 水文学(农业) 差异(会计) 回归 计算机科学 土地利用 统计 机器学习 数学 生态学 工程类 岩土工程 生物 会计 业务
作者
Mohammad Hafez Ahmed,Lian-Shin Lin
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:597: 126213-126213 被引量:62
标识
DOI:10.1016/j.jhydrol.2021.126213
摘要

Modeling dissolved oxygen (DO) in running water represents a challenge due to complex interactions among various processes affecting its concentration and the intricacy of using process-based water quality models. In this study, a quantile regression forest (QRF) machine learning technique was used to develop data-driven models for predicting DO levels in three rivers that drain watersheds with distinctly different land use and land cover characteristics in different geographical regions. Water quality data, spanning 2007 to 2019, was used to develop and validate the models. Key DO drivers were first identified based on the variable importance index, and models were constructed for different combinations of the identified drivers as the input variables. Each model was calibrated for each input scenario using 80% of the data and validated by predicting the DO concentrations using the remaining 20% of the data. Excellent model performance was obtained with water temperature, pH, specific conductance, and chemical oxygen demand (COD) as input variables across the stations with water temperature and pH as the top predictors. The developed models outperformed multilayer perceptron neural network (MLPNN) and U.S. Environmental Protection Agency models in explaining data variance as well as giving lower errors in predictions. The commonality of the top-ranked predictors for the three geographically distant rivers suggests the possibility of building parsimonious models with a minimal number of predictors for in-stream DO predictions. These predictors are among the common physio-chemical water quality parameters of existing ambient water quality monitoring programs and are readily available for the model development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Loki发布了新的文献求助10
刚刚
zyl发布了新的文献求助10
刚刚
FL发布了新的文献求助10
刚刚
王怜花发布了新的文献求助10
刚刚
酷酷云朵发布了新的文献求助10
1秒前
骄傲哇完成签到,获得积分10
1秒前
怠慢发布了新的文献求助10
1秒前
1秒前
思源应助软软采纳,获得10
1秒前
1秒前
2秒前
lazy完成签到,获得积分10
2秒前
科研汪发布了新的文献求助10
2秒前
慕青应助恰好喜欢采纳,获得10
3秒前
3秒前
111关闭了111文献求助
4秒前
zz驳回了丘比特应助
4秒前
孤独蘑菇发布了新的文献求助50
5秒前
5秒前
鸽子发布了新的文献求助10
6秒前
WWXWWX发布了新的文献求助10
6秒前
6秒前
烟花应助甄昕采纳,获得10
7秒前
rediculoussss完成签到,获得积分10
7秒前
JamesPei应助司徒迎曼采纳,获得10
7秒前
8秒前
英姑应助酷酷乐瑶采纳,获得10
9秒前
情怀应助咸鱼采纳,获得10
9秒前
十六日呀发布了新的文献求助10
10秒前
英俊的铭应助骆怀薇采纳,获得10
10秒前
10秒前
等待凡桃发布了新的文献求助10
10秒前
缝纫工发布了新的文献求助10
11秒前
小林是我完成签到,获得积分20
11秒前
12秒前
小子关注了科研通微信公众号
12秒前
orixero应助怠慢采纳,获得10
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693319
求助须知:如何正确求助?哪些是违规求助? 5092294
关于积分的说明 15211264
捐赠科研通 4850295
什么是DOI,文献DOI怎么找? 2601689
邀请新用户注册赠送积分活动 1553480
关于科研通互助平台的介绍 1511450