Dissolved oxygen concentration predictions for running waters with different land use land cover using a quantile regression forest machine learning technique

水质 环境科学 土地覆盖 预测建模 分位数 水文学(农业) 差异(会计) 回归 计算机科学 土地利用 统计 机器学习 数学 生态学 工程类 岩土工程 生物 会计 业务
作者
Mohammad Hafez Ahmed,Lian-Shin Lin
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:597: 126213-126213 被引量:62
标识
DOI:10.1016/j.jhydrol.2021.126213
摘要

Modeling dissolved oxygen (DO) in running water represents a challenge due to complex interactions among various processes affecting its concentration and the intricacy of using process-based water quality models. In this study, a quantile regression forest (QRF) machine learning technique was used to develop data-driven models for predicting DO levels in three rivers that drain watersheds with distinctly different land use and land cover characteristics in different geographical regions. Water quality data, spanning 2007 to 2019, was used to develop and validate the models. Key DO drivers were first identified based on the variable importance index, and models were constructed for different combinations of the identified drivers as the input variables. Each model was calibrated for each input scenario using 80% of the data and validated by predicting the DO concentrations using the remaining 20% of the data. Excellent model performance was obtained with water temperature, pH, specific conductance, and chemical oxygen demand (COD) as input variables across the stations with water temperature and pH as the top predictors. The developed models outperformed multilayer perceptron neural network (MLPNN) and U.S. Environmental Protection Agency models in explaining data variance as well as giving lower errors in predictions. The commonality of the top-ranked predictors for the three geographically distant rivers suggests the possibility of building parsimonious models with a minimal number of predictors for in-stream DO predictions. These predictors are among the common physio-chemical water quality parameters of existing ambient water quality monitoring programs and are readily available for the model development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
3秒前
皮崇知发布了新的文献求助10
4秒前
Zjx发布了新的文献求助10
5秒前
爆米花应助忧郁的鱿鱼采纳,获得10
7秒前
bkagyin应助听话的寒烟采纳,获得10
9秒前
星沉静默发布了新的文献求助10
10秒前
JOKY完成签到 ,获得积分10
12秒前
上官若男应助Zjx采纳,获得10
13秒前
不良帅完成签到,获得积分10
14秒前
KUZMA完成签到,获得积分10
15秒前
18秒前
清溪鱼唱完成签到,获得积分10
18秒前
图雄争霸完成签到 ,获得积分10
18秒前
邪恶花生米完成签到 ,获得积分10
18秒前
星期三不调闹钟完成签到 ,获得积分10
19秒前
我是老大应助神海采纳,获得10
20秒前
21秒前
李爱国应助清溪鱼唱采纳,获得10
24秒前
26秒前
26秒前
受伤翠容发布了新的文献求助10
29秒前
太阳花发布了新的文献求助10
30秒前
31秒前
刻苦的黑米完成签到,获得积分10
35秒前
英俊的铭应助受伤翠容采纳,获得10
37秒前
卡皮巴拉完成签到,获得积分10
38秒前
希望天下0贩的0应助Yxy2021采纳,获得10
38秒前
丘比特应助范白白采纳,获得10
39秒前
41秒前
松林发布了新的文献求助10
41秒前
感动清炎完成签到,获得积分10
43秒前
miku完成签到 ,获得积分10
44秒前
zhuhaot发布了新的文献求助50
44秒前
活泼万言发布了新的文献求助10
49秒前
ding应助QYPANG采纳,获得10
50秒前
yx_cheng应助松林采纳,获得20
51秒前
53秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993104
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264385
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652