Dissolved oxygen concentration predictions for running waters with different land use land cover using a quantile regression forest machine learning technique

水质 环境科学 土地覆盖 预测建模 分位数 水文学(农业) 差异(会计) 回归 计算机科学 土地利用 统计 机器学习 数学 生态学 工程类 岩土工程 生物 会计 业务
作者
Mohammad Hafez Ahmed,Lian-Shin Lin
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:597: 126213-126213 被引量:62
标识
DOI:10.1016/j.jhydrol.2021.126213
摘要

Modeling dissolved oxygen (DO) in running water represents a challenge due to complex interactions among various processes affecting its concentration and the intricacy of using process-based water quality models. In this study, a quantile regression forest (QRF) machine learning technique was used to develop data-driven models for predicting DO levels in three rivers that drain watersheds with distinctly different land use and land cover characteristics in different geographical regions. Water quality data, spanning 2007 to 2019, was used to develop and validate the models. Key DO drivers were first identified based on the variable importance index, and models were constructed for different combinations of the identified drivers as the input variables. Each model was calibrated for each input scenario using 80% of the data and validated by predicting the DO concentrations using the remaining 20% of the data. Excellent model performance was obtained with water temperature, pH, specific conductance, and chemical oxygen demand (COD) as input variables across the stations with water temperature and pH as the top predictors. The developed models outperformed multilayer perceptron neural network (MLPNN) and U.S. Environmental Protection Agency models in explaining data variance as well as giving lower errors in predictions. The commonality of the top-ranked predictors for the three geographically distant rivers suggests the possibility of building parsimonious models with a minimal number of predictors for in-stream DO predictions. These predictors are among the common physio-chemical water quality parameters of existing ambient water quality monitoring programs and are readily available for the model development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
风宝宝完成签到,获得积分10
1秒前
1秒前
白白完成签到,获得积分20
1秒前
车访枫完成签到 ,获得积分10
2秒前
nas完成签到,获得积分10
3秒前
dongdong完成签到 ,获得积分10
4秒前
桑梓完成签到,获得积分20
4秒前
梦梦发布了新的文献求助10
4秒前
无限青雪发布了新的文献求助10
5秒前
5秒前
6秒前
Llllllxxxxxxx完成签到,获得积分10
7秒前
都暻秀女朋友完成签到,获得积分10
7秒前
8秒前
研友_nvG5bZ发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
李健的粉丝团团长应助Cln采纳,获得10
10秒前
图苏发布了新的文献求助10
11秒前
qqq关闭了qqq文献求助
11秒前
香蕉觅云应助桑梓采纳,获得10
11秒前
12秒前
12秒前
白白发布了新的文献求助10
13秒前
晴空万里完成签到,获得积分10
13秒前
13秒前
hahaha发布了新的文献求助30
13秒前
13秒前
14秒前
14秒前
风宝宝发布了新的文献求助10
14秒前
16秒前
打打应助汤襄采纳,获得10
17秒前
17秒前
在水一方应助无限青雪采纳,获得10
17秒前
00小费0发布了新的文献求助10
17秒前
小董不懂发布了新的文献求助10
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123170
求助须知:如何正确求助?哪些是违规求助? 2773659
关于积分的说明 7718928
捐赠科研通 2429325
什么是DOI,文献DOI怎么找? 1290230
科研通“疑难数据库(出版商)”最低求助积分说明 621795
版权声明 600251