清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dissolved oxygen concentration predictions for running waters with different land use land cover using a quantile regression forest machine learning technique

水质 环境科学 土地覆盖 预测建模 分位数 水文学(农业) 差异(会计) 回归 计算机科学 土地利用 统计 机器学习 数学 生态学 工程类 岩土工程 生物 会计 业务
作者
Mohammad Hafez Ahmed,Lian-Shin Lin
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:597: 126213-126213 被引量:62
标识
DOI:10.1016/j.jhydrol.2021.126213
摘要

Modeling dissolved oxygen (DO) in running water represents a challenge due to complex interactions among various processes affecting its concentration and the intricacy of using process-based water quality models. In this study, a quantile regression forest (QRF) machine learning technique was used to develop data-driven models for predicting DO levels in three rivers that drain watersheds with distinctly different land use and land cover characteristics in different geographical regions. Water quality data, spanning 2007 to 2019, was used to develop and validate the models. Key DO drivers were first identified based on the variable importance index, and models were constructed for different combinations of the identified drivers as the input variables. Each model was calibrated for each input scenario using 80% of the data and validated by predicting the DO concentrations using the remaining 20% of the data. Excellent model performance was obtained with water temperature, pH, specific conductance, and chemical oxygen demand (COD) as input variables across the stations with water temperature and pH as the top predictors. The developed models outperformed multilayer perceptron neural network (MLPNN) and U.S. Environmental Protection Agency models in explaining data variance as well as giving lower errors in predictions. The commonality of the top-ranked predictors for the three geographically distant rivers suggests the possibility of building parsimonious models with a minimal number of predictors for in-stream DO predictions. These predictors are among the common physio-chemical water quality parameters of existing ambient water quality monitoring programs and are readily available for the model development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
啊蒙发布了新的文献求助10
8秒前
21秒前
秋半雪发布了新的文献求助10
26秒前
啊蒙完成签到,获得积分10
26秒前
乐乐应助小居采纳,获得10
30秒前
33秒前
Funnymudpee发布了新的文献求助10
37秒前
53秒前
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
kzxhql发布了新的文献求助10
1分钟前
1分钟前
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
minnie完成签到 ,获得积分10
1分钟前
1分钟前
专注的觅云完成签到 ,获得积分10
1分钟前
怪怪完成签到,获得积分10
2分钟前
Nene完成签到 ,获得积分20
2分钟前
2分钟前
xxfsx应助kzxhql采纳,获得10
2分钟前
xxfsx应助kzxhql采纳,获得10
2分钟前
2分钟前
Funnymudpee发布了新的文献求助10
2分钟前
2分钟前
MTF完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Eileen完成签到 ,获得积分0
3分钟前
合不着完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624