Using interictal seizure-free EEG data to recognise patients with epilepsy based on machine learning of brain functional connectivity

发作性 脑电图 癫痫 计算机科学 模式识别(心理学) 人工智能 心理学 神经科学
作者
Jun Cao,Kacper Grajcar,Xiaocai Shan,Yifan Zhao,Jiaru Zou,Liang‐Yu Chen,Zhiqing Li,Richard A. Grünewald,Panagiotis Zis,Matteo De Marco,Zoe C. Unwin,Daniel Blackburn,Ptolemaios G. Sarrigiannis
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:67: 102554-102554 被引量:20
标识
DOI:10.1016/j.bspc.2021.102554
摘要

Most seizures in adults with epilepsy occur rather infrequently and as a result, the interictal EEG plays a crucial role in the diagnosis and classification of epilepsy. However, empirical interpretation, of a first EEG in adult patients, has a very low sensitivity ranging between 29–55 %. Useful EEG information remains buried within the signals in seizure-free EEG epochs, far beyond the observational capabilities of any specialised physician in this field. Unlike most of the existing works focusing on either seizure data or single-variate method, we introduce a multi-variate method to characterise sensor level brain functional connectivity from interictal EEG data to identify patients with generalised epilepsy. A total of 9 connectivity features based on 5 different measures in time, frequency and time-frequency domains have been tested. The solution has been validated by the K-Nearest Neighbour algorithm, classifying an epilepsy group (EG) vs healthy controls (HC) and subsequently with another cohort of patients characterised by non-epileptic attacks (NEAD), a psychogenic type of disorder. A high classification accuracy (97 %) was achieved for EG vs HC while revealing significant spatio-temporal deficits in the frontocentral areas in the beta frequency band. For EG vs NEAD, the classification accuracy was only about 73 %, which might be a reflection of the well-described coexistence of NEAD with epileptic attacks. Our work demonstrates that seizure-free interictal EEG data can be used to accurately classify patients with generalised epilepsy from HC and that more systematic work is required in this direction aiming to produce a clinically useful diagnostic method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
wang完成签到,获得积分10
4秒前
neao完成签到,获得积分10
4秒前
第二个账号完成签到 ,获得积分10
5秒前
成就觅翠发布了新的文献求助10
5秒前
5秒前
刘小小123发布了新的文献求助10
7秒前
20231125完成签到,获得积分10
8秒前
想毕业的小橙子完成签到,获得积分10
14秒前
俊秀的半雪完成签到,获得积分10
14秒前
ren完成签到 ,获得积分10
15秒前
15秒前
淡淡代玉发布了新的文献求助20
17秒前
CipherSage应助萧一采纳,获得10
17秒前
Rollin完成签到 ,获得积分10
18秒前
科目三应助Lebranium采纳,获得10
18秒前
爆米花应助daodao采纳,获得10
19秒前
20秒前
hms完成签到 ,获得积分10
22秒前
psychedeng完成签到,获得积分10
23秒前
23秒前
23秒前
林白生完成签到,获得积分10
24秒前
刘小小123完成签到,获得积分20
24秒前
zm发布了新的文献求助10
26秒前
愉快凡旋发布了新的文献求助10
26秒前
26秒前
27秒前
28秒前
萱萱发布了新的文献求助10
28秒前
30秒前
加厚加大完成签到 ,获得积分10
30秒前
Lebranium发布了新的文献求助10
31秒前
青羽落霞完成签到 ,获得积分10
31秒前
传统的孤丝完成签到 ,获得积分10
32秒前
iOhyeye23发布了新的文献求助10
32秒前
33秒前
明明发布了新的文献求助10
33秒前
无情的代柔完成签到 ,获得积分10
34秒前
daodao发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997537
求助须知:如何正确求助?哪些是违规求助? 3537062
关于积分的说明 11270787
捐赠科研通 3276299
什么是DOI,文献DOI怎么找? 1806863
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975