Using interictal seizure-free EEG data to recognise patients with epilepsy based on machine learning of brain functional connectivity

发作性 脑电图 癫痫 计算机科学 模式识别(心理学) 人工智能 心理学 神经科学
作者
Jun Cao,Kacper Grajcar,Xiaocai Shan,Yifan Zhao,Jiaru Zou,Liang‐Yu Chen,Zhiqing Li,Richard A. Grünewald,Panagiotis Zis,Matteo De Marco,Zoe C. Unwin,Daniel Blackburn,Ptolemaios G. Sarrigiannis
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:67: 102554-102554 被引量:20
标识
DOI:10.1016/j.bspc.2021.102554
摘要

Most seizures in adults with epilepsy occur rather infrequently and as a result, the interictal EEG plays a crucial role in the diagnosis and classification of epilepsy. However, empirical interpretation, of a first EEG in adult patients, has a very low sensitivity ranging between 29–55 %. Useful EEG information remains buried within the signals in seizure-free EEG epochs, far beyond the observational capabilities of any specialised physician in this field. Unlike most of the existing works focusing on either seizure data or single-variate method, we introduce a multi-variate method to characterise sensor level brain functional connectivity from interictal EEG data to identify patients with generalised epilepsy. A total of 9 connectivity features based on 5 different measures in time, frequency and time-frequency domains have been tested. The solution has been validated by the K-Nearest Neighbour algorithm, classifying an epilepsy group (EG) vs healthy controls (HC) and subsequently with another cohort of patients characterised by non-epileptic attacks (NEAD), a psychogenic type of disorder. A high classification accuracy (97 %) was achieved for EG vs HC while revealing significant spatio-temporal deficits in the frontocentral areas in the beta frequency band. For EG vs NEAD, the classification accuracy was only about 73 %, which might be a reflection of the well-described coexistence of NEAD with epileptic attacks. Our work demonstrates that seizure-free interictal EEG data can be used to accurately classify patients with generalised epilepsy from HC and that more systematic work is required in this direction aiming to produce a clinically useful diagnostic method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助顺利鱼采纳,获得10
刚刚
搜集达人应助招财不肥采纳,获得10
1秒前
sweetbearm应助李秋静采纳,获得10
1秒前
Michael_li完成签到,获得积分10
1秒前
whs完成签到,获得积分10
3秒前
科研通AI5应助xlj采纳,获得10
4秒前
再干一杯发布了新的文献求助10
4秒前
5秒前
满意的天完成签到 ,获得积分10
5秒前
luoshiwen完成签到,获得积分10
5秒前
落寞的觅柔完成签到,获得积分10
7秒前
8秒前
LUNWENREQUEST发布了新的文献求助10
8秒前
9秒前
10秒前
123cxj完成签到,获得积分10
13秒前
CO2发布了新的文献求助10
13秒前
summer发布了新的文献求助10
13秒前
14秒前
Xx.发布了新的文献求助10
14秒前
大大关注了科研通微信公众号
14秒前
稚祎完成签到 ,获得积分10
14秒前
14秒前
CodeCraft应助东东采纳,获得10
15秒前
16秒前
叽里咕噜完成签到 ,获得积分10
17秒前
田様应助zccc采纳,获得10
18秒前
隐形的雁完成签到,获得积分10
18秒前
追寻的秋玲完成签到,获得积分10
19秒前
李繁蕊发布了新的文献求助10
19秒前
20秒前
舒心的紫雪完成签到 ,获得积分10
21秒前
21秒前
23秒前
23秒前
24秒前
不上课不行完成签到,获得积分10
25秒前
再干一杯完成签到,获得积分10
25秒前
26秒前
汉堡包应助rudjs采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808