Using interictal seizure-free EEG data to recognise patients with epilepsy based on machine learning of brain functional connectivity

发作性 脑电图 癫痫 计算机科学 模式识别(心理学) 人工智能 心理学 神经科学
作者
Jun Cao,Kacper Grajcar,Xiaocai Shan,Yifan Zhao,Jiaru Zou,Liang‐Yu Chen,Zhiqing Li,Richard A. Grünewald,Panagiotis Zis,Matteo De Marco,Zoe C. Unwin,Daniel Blackburn,Ptolemaios G. Sarrigiannis
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:67: 102554-102554 被引量:20
标识
DOI:10.1016/j.bspc.2021.102554
摘要

Most seizures in adults with epilepsy occur rather infrequently and as a result, the interictal EEG plays a crucial role in the diagnosis and classification of epilepsy. However, empirical interpretation, of a first EEG in adult patients, has a very low sensitivity ranging between 29–55 %. Useful EEG information remains buried within the signals in seizure-free EEG epochs, far beyond the observational capabilities of any specialised physician in this field. Unlike most of the existing works focusing on either seizure data or single-variate method, we introduce a multi-variate method to characterise sensor level brain functional connectivity from interictal EEG data to identify patients with generalised epilepsy. A total of 9 connectivity features based on 5 different measures in time, frequency and time-frequency domains have been tested. The solution has been validated by the K-Nearest Neighbour algorithm, classifying an epilepsy group (EG) vs healthy controls (HC) and subsequently with another cohort of patients characterised by non-epileptic attacks (NEAD), a psychogenic type of disorder. A high classification accuracy (97 %) was achieved for EG vs HC while revealing significant spatio-temporal deficits in the frontocentral areas in the beta frequency band. For EG vs NEAD, the classification accuracy was only about 73 %, which might be a reflection of the well-described coexistence of NEAD with epileptic attacks. Our work demonstrates that seizure-free interictal EEG data can be used to accurately classify patients with generalised epilepsy from HC and that more systematic work is required in this direction aiming to produce a clinically useful diagnostic method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Niuma发布了新的文献求助10
刚刚
2秒前
3秒前
4秒前
4秒前
小枫完成签到 ,获得积分10
4秒前
小蘑菇应助Mm采纳,获得10
4秒前
李爱国应助可耐的白山采纳,获得10
4秒前
5秒前
周易完成签到,获得积分10
6秒前
雪白的若翠完成签到,获得积分10
6秒前
可爱的函函应助cghmfgh采纳,获得10
7秒前
KIVA完成签到,获得积分10
10秒前
XZY发布了新的文献求助10
10秒前
11秒前
认真学习完成签到,获得积分10
12秒前
小陈老板发布了新的文献求助10
13秒前
醒醒发布了新的文献求助10
13秒前
深情安青应助林夕采纳,获得10
14秒前
bkagyin应助部川苦茶采纳,获得10
14秒前
wanci应助文静的千秋采纳,获得10
17秒前
研友_LpAbjn完成签到,获得积分10
17秒前
19秒前
21秒前
21秒前
爱学习的11完成签到,获得积分10
23秒前
林夕发布了新的文献求助10
24秒前
25秒前
25秒前
buzhidao完成签到,获得积分10
26秒前
不配.应助研友_Z7XY28采纳,获得20
27秒前
Niuma完成签到,获得积分10
28秒前
小陈老板完成签到,获得积分10
28秒前
29秒前
ZJK完成签到,获得积分20
30秒前
31秒前
31秒前
Sean0382发布了新的文献求助10
31秒前
32秒前
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260