Automatic classification and detection of oral cancer in photographic images using deep learning algorithms

接收机工作特性 人工智能 卷积神经网络 计算机科学 深度学习 医学 模式识别(心理学) 召回 精确性和召回率 F1得分 基底细胞 口腔癌 机器学习 算法 病理 心理学 认知心理学
作者
Kritsasith Warin,Wasit Limprasert,Siriwan Suebnukarn,Suthin Jinaporntham,Patcharapon Jantana
出处
期刊:Journal of Oral Pathology & Medicine [Wiley]
卷期号:50 (9): 911-918 被引量:95
标识
DOI:10.1111/jop.13227
摘要

Oral cancer is a deadly disease among the most common malignant tumors worldwide, and it has become an increasingly important public health problem in developing and low-to-middle income countries. This study aims to use the convolutional neural network (CNN) deep learning algorithms to develop an automated classification and detection model for oral cancer screening.The study included 700 clinical oral photographs, collected retrospectively from the oral and maxillofacial center, which were divided into 350 images of oral squamous cell carcinoma and 350 images of normal oral mucosa. The classification and detection models were created by using DenseNet121 and faster R-CNN, respectively. Four hundred and ninety images were randomly selected as training data. In addition, 70 and 140 images were assigned as validating and testing data, respectively.The classification accuracy of DenseNet121 model achieved a precision of 99%, a recall of 100%, an F1 score of 99%, a sensitivity of 98.75%, a specificity of 100%, and an area under the receiver operating characteristic curve of 99%. The detection accuracy of a faster R-CNN model achieved a precision of 76.67%, a recall of 82.14%, an F1 score of 79.31%, and an area under the precision-recall curve of 0.79.The DenseNet121 and faster R-CNN algorithm were proved to offer the acceptable potential for classification and detection of cancerous lesions in oral photographic images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rae发布了新的文献求助10
1秒前
无限不尤发布了新的文献求助10
1秒前
badjack完成签到,获得积分10
2秒前
涂玉含发布了新的文献求助10
2秒前
老实su完成签到,获得积分10
2秒前
3秒前
4秒前
enterdawn完成签到,获得积分10
4秒前
hellocat完成签到,获得积分10
6秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
xiaobai应助科研通管家采纳,获得10
7秒前
维奈克拉应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
吉星高照应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
8秒前
xr应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
zcl应助科研通管家采纳,获得50
8秒前
浮游应助科研通管家采纳,获得10
8秒前
冷艳迎蕾应助科研通管家采纳,获得10
8秒前
称心曼安应助科研通管家采纳,获得20
8秒前
烟花应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
Ankher应助科研通管家采纳,获得100
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
王敏娜完成签到 ,获得积分10
10秒前
涂玉含完成签到,获得积分10
10秒前
mendicant完成签到,获得积分10
11秒前
大气糖豆完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305621
求助须知:如何正确求助?哪些是违规求助? 4451675
关于积分的说明 13852841
捐赠科研通 4339166
什么是DOI,文献DOI怎么找? 2382356
邀请新用户注册赠送积分活动 1377412
关于科研通互助平台的介绍 1344979