Automatic classification and detection of oral cancer in photographic images using deep learning algorithms

接收机工作特性 人工智能 卷积神经网络 计算机科学 深度学习 医学 模式识别(心理学) 召回 精确性和召回率 F1得分 基底细胞 口腔癌 机器学习 算法 病理 心理学 认知心理学
作者
Kritsasith Warin,Wasit Limprasert,Siriwan Suebnukarn,Suthin Jinaporntham,Patcharapon Jantana
出处
期刊:Journal of Oral Pathology & Medicine [Wiley]
卷期号:50 (9): 911-918 被引量:95
标识
DOI:10.1111/jop.13227
摘要

Oral cancer is a deadly disease among the most common malignant tumors worldwide, and it has become an increasingly important public health problem in developing and low-to-middle income countries. This study aims to use the convolutional neural network (CNN) deep learning algorithms to develop an automated classification and detection model for oral cancer screening.The study included 700 clinical oral photographs, collected retrospectively from the oral and maxillofacial center, which were divided into 350 images of oral squamous cell carcinoma and 350 images of normal oral mucosa. The classification and detection models were created by using DenseNet121 and faster R-CNN, respectively. Four hundred and ninety images were randomly selected as training data. In addition, 70 and 140 images were assigned as validating and testing data, respectively.The classification accuracy of DenseNet121 model achieved a precision of 99%, a recall of 100%, an F1 score of 99%, a sensitivity of 98.75%, a specificity of 100%, and an area under the receiver operating characteristic curve of 99%. The detection accuracy of a faster R-CNN model achieved a precision of 76.67%, a recall of 82.14%, an F1 score of 79.31%, and an area under the precision-recall curve of 0.79.The DenseNet121 and faster R-CNN algorithm were proved to offer the acceptable potential for classification and detection of cancerous lesions in oral photographic images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助zyf采纳,获得30
2秒前
忧伤的慕梅完成签到 ,获得积分10
2秒前
2秒前
watermelon完成签到,获得积分10
2秒前
俊逸沅完成签到,获得积分10
3秒前
Akim应助wb采纳,获得10
3秒前
会飞的史迪奇完成签到,获得积分10
4秒前
5秒前
大黄完成签到,获得积分10
5秒前
斯文可仁完成签到,获得积分10
5秒前
6秒前
Lolo发布了新的文献求助10
6秒前
cjc完成签到,获得积分10
6秒前
8秒前
美女完成签到,获得积分10
8秒前
XX发布了新的文献求助10
8秒前
YuZhang发布了新的文献求助10
9秒前
JJ发布了新的文献求助10
9秒前
林宇发布了新的文献求助10
11秒前
Hunter1023完成签到,获得积分10
11秒前
SciGPT应助ao采纳,获得10
12秒前
落雪完成签到 ,获得积分10
12秒前
linya发布了新的文献求助10
13秒前
lele发布了新的文献求助10
13秒前
13秒前
13秒前
15秒前
鱼鱼鱼完成签到,获得积分10
16秒前
16秒前
浮游应助几两采纳,获得10
17秒前
顾矜应助微信研友采纳,获得10
17秒前
17秒前
18秒前
18秒前
南海子发布了新的文献求助10
19秒前
ZOE完成签到,获得积分0
20秒前
jklh发布了新的文献求助10
20秒前
21秒前
22秒前
狂妄冰戟发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460885
求助须知:如何正确求助?哪些是违规求助? 4565924
关于积分的说明 14302173
捐赠科研通 4491506
什么是DOI,文献DOI怎么找? 2460346
邀请新用户注册赠送积分活动 1449679
关于科研通互助平台的介绍 1425492