Automatic classification and detection of oral cancer in photographic images using deep learning algorithms

接收机工作特性 人工智能 卷积神经网络 计算机科学 深度学习 医学 模式识别(心理学) 召回 精确性和召回率 F1得分 基底细胞 口腔癌 机器学习 算法 病理 心理学 认知心理学
作者
Kritsasith Warin,Wasit Limprasert,Siriwan Suebnukarn,Suthin Jinaporntham,Patcharapon Jantana
出处
期刊:Journal of Oral Pathology & Medicine [Wiley]
卷期号:50 (9): 911-918 被引量:95
标识
DOI:10.1111/jop.13227
摘要

Oral cancer is a deadly disease among the most common malignant tumors worldwide, and it has become an increasingly important public health problem in developing and low-to-middle income countries. This study aims to use the convolutional neural network (CNN) deep learning algorithms to develop an automated classification and detection model for oral cancer screening.The study included 700 clinical oral photographs, collected retrospectively from the oral and maxillofacial center, which were divided into 350 images of oral squamous cell carcinoma and 350 images of normal oral mucosa. The classification and detection models were created by using DenseNet121 and faster R-CNN, respectively. Four hundred and ninety images were randomly selected as training data. In addition, 70 and 140 images were assigned as validating and testing data, respectively.The classification accuracy of DenseNet121 model achieved a precision of 99%, a recall of 100%, an F1 score of 99%, a sensitivity of 98.75%, a specificity of 100%, and an area under the receiver operating characteristic curve of 99%. The detection accuracy of a faster R-CNN model achieved a precision of 76.67%, a recall of 82.14%, an F1 score of 79.31%, and an area under the precision-recall curve of 0.79.The DenseNet121 and faster R-CNN algorithm were proved to offer the acceptable potential for classification and detection of cancerous lesions in oral photographic images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助li采纳,获得10
刚刚
刚刚
孟寐以求发布了新的文献求助20
刚刚
刚刚
刚刚
denly应助王东旭采纳,获得10
1秒前
yiyi发布了新的文献求助10
1秒前
Jjj完成签到,获得积分10
1秒前
碧蓝的安露完成签到 ,获得积分10
1秒前
大个应助辐睿采纳,获得10
2秒前
量子星尘发布了新的文献求助20
2秒前
3秒前
3秒前
lc发布了新的文献求助20
3秒前
3秒前
3秒前
yutian完成签到,获得积分10
4秒前
again完成签到,获得积分10
5秒前
5秒前
杨华启完成签到,获得积分10
5秒前
XYN1完成签到,获得积分10
5秒前
香蕉觅云应助精明人达采纳,获得10
6秒前
6秒前
nianxunxi完成签到,获得积分10
6秒前
MouLi完成签到,获得积分10
6秒前
221完成签到,获得积分10
6秒前
英姑应助杨19980625采纳,获得10
7秒前
paz_1010完成签到,获得积分10
7秒前
脑洞疼应助无颜猪采纳,获得10
7秒前
charry发布了新的文献求助10
7秒前
8秒前
8秒前
KARRY完成签到 ,获得积分20
8秒前
ZXD1989完成签到 ,获得积分10
8秒前
破伤疯完成签到,获得积分10
8秒前
8秒前
9秒前
靓丽幻梅发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017