Automatic classification and detection of oral cancer in photographic images using deep learning algorithms

接收机工作特性 人工智能 卷积神经网络 计算机科学 深度学习 医学 模式识别(心理学) 召回 精确性和召回率 F1得分 基底细胞 口腔癌 机器学习 算法 病理 心理学 认知心理学
作者
Kritsasith Warin,Wasit Limprasert,Siriwan Suebnukarn,Suthin Jinaporntham,Patcharapon Jantana
出处
期刊:Journal of Oral Pathology & Medicine [Wiley]
卷期号:50 (9): 911-918 被引量:95
标识
DOI:10.1111/jop.13227
摘要

Oral cancer is a deadly disease among the most common malignant tumors worldwide, and it has become an increasingly important public health problem in developing and low-to-middle income countries. This study aims to use the convolutional neural network (CNN) deep learning algorithms to develop an automated classification and detection model for oral cancer screening.The study included 700 clinical oral photographs, collected retrospectively from the oral and maxillofacial center, which were divided into 350 images of oral squamous cell carcinoma and 350 images of normal oral mucosa. The classification and detection models were created by using DenseNet121 and faster R-CNN, respectively. Four hundred and ninety images were randomly selected as training data. In addition, 70 and 140 images were assigned as validating and testing data, respectively.The classification accuracy of DenseNet121 model achieved a precision of 99%, a recall of 100%, an F1 score of 99%, a sensitivity of 98.75%, a specificity of 100%, and an area under the receiver operating characteristic curve of 99%. The detection accuracy of a faster R-CNN model achieved a precision of 76.67%, a recall of 82.14%, an F1 score of 79.31%, and an area under the precision-recall curve of 0.79.The DenseNet121 and faster R-CNN algorithm were proved to offer the acceptable potential for classification and detection of cancerous lesions in oral photographic images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
CipherSage应助123采纳,获得10
1秒前
猫咪完成签到,获得积分10
1秒前
aaaaaa完成签到,获得积分10
1秒前
上官若男应助撒玉采纳,获得10
1秒前
科研通AI6应助子辰采纳,获得10
2秒前
爆米花应助子辰采纳,获得10
2秒前
3秒前
BBy_Smile发布了新的文献求助10
4秒前
张雨露完成签到 ,获得积分10
4秒前
4秒前
4秒前
wjx发布了新的文献求助10
5秒前
Orange应助快乐花卷采纳,获得10
5秒前
小二郎应助小张采纳,获得10
5秒前
6秒前
科研通AI6应助Canary采纳,获得10
7秒前
轻凌miku完成签到,获得积分20
7秒前
7秒前
科研通AI6应助林天采纳,获得30
8秒前
song完成签到,获得积分10
8秒前
安安完成签到,获得积分10
8秒前
今后应助波波仔采纳,获得10
8秒前
天天快乐应助ss采纳,获得10
9秒前
9秒前
九门提督完成签到,获得积分10
9秒前
9秒前
10秒前
核桃应助itsss采纳,获得30
10秒前
10秒前
美好斓发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
ding应助大笨笨采纳,获得10
11秒前
123木头人发布了新的文献求助10
11秒前
12秒前
清爽的驳发布了新的文献求助10
12秒前
321发布了新的文献求助10
12秒前
充满怪兽的世界完成签到,获得积分10
13秒前
gabee完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401