A Hybrid Microstructure Piezoresistive Sensor with Machine Learning Approach for Gesture Recognition

触觉传感器 人工智能 计算机科学 压阻效应 机器人 灵活性(工程) 接口(物质) 机器学习 模式识别(心理学) 工程类 电气工程 数学 统计 最大气泡压力法 气泡 并行计算
作者
Yousef Al-Handarish,Olatunji Mumini Omisore,Jing Chen,Xiuqi Cao,Toluwanimi Oluwadara Akinyemi,Yan Yan,Lei Wang
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (16): 7264-7264 被引量:6
标识
DOI:10.3390/app11167264
摘要

Developments in flexible electronics have adopted various approaches which have enhanced the applicability of human–machine interface fields. Recently, microstructural integration and hybrid functional materials were designed for realizing human somatosensory. Nonetheless, designing tactile sensors with smart structures using facile and low-cost fabrication processes remains challenging. Furthermore, using the sensors for recognizing stimuli and feedback applications remains poorly validated. In this study, a highly flexible piezoresistive tactile sensor was developed by homogeneously dispersing carbon black (CB) in a microstructure porous sugar/PDMS-based sponge. Owning to its high flexibility and softness, the sensor can be mounted on human or robotic systems for different clinical applications. We validated the applicability of the proposed sensor by applying it to recognizing grasp and release forces in an open setting and to classifying hand motions that surgeons apply on the master interface of a robotic system during intravascular catheterization. For this purpose, we implemented the long short-term memory (LSTM)-dense classification model and five traditional machine learning methods, namely, support vector machine, multilayer perceptron, decision tree, and k-nearest neighbor. The models were used to classify the different hand gestures obtained in an open-setting experiment. Amongst all, the LSTM-dense method yielded the highest overall recognition accuracy (87.38%). Nevertheless, the performance of the other models was in a similar range, showing that our sensor structure can be applied in intelligence sensing or tactile feedback systems. Secondly, the sensor prototype was applied to analyze the motions made while manipulating an interventional robot. We analyzed the displacement and velocity of the master interface during typical axial (push/pull) and radial operations with the robot. The results obtained show that the sensor is capable of recording unique patterns during different operations. Thus, a combination of the flexible wearable sensors and machine learning could yield a future generation of flexible materials and artificial intelligence of things (AIoT) devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
养鸟的人发布了新的文献求助10
1秒前
MFNM发布了新的文献求助10
1秒前
大林完成签到 ,获得积分20
2秒前
英俊的铭应助sunnyliu采纳,获得30
3秒前
4秒前
Hello应助张较瘦采纳,获得10
4秒前
4秒前
我是老大应助奥丁蒂法采纳,获得10
4秒前
6秒前
乐乐应助东方归尘采纳,获得10
6秒前
6秒前
迅速的丑发布了新的文献求助10
6秒前
wanci应助zzz采纳,获得10
7秒前
开放的太君完成签到 ,获得积分10
7秒前
7秒前
星星发布了新的文献求助10
9秒前
一只呆呆完成签到 ,获得积分10
10秒前
zhu发布了新的文献求助10
10秒前
xiazhq完成签到,获得积分10
11秒前
12秒前
qwert完成签到,获得积分20
13秒前
sober完成签到,获得积分20
13秒前
大意的惊蛰完成签到,获得积分10
13秒前
科研通AI6应助Chen采纳,获得10
13秒前
龙仔子发布了新的文献求助10
15秒前
15秒前
瘦瘦的寒珊完成签到,获得积分10
15秒前
min发布了新的文献求助10
16秒前
17秒前
MrZhou发布了新的文献求助10
18秒前
18秒前
深情安青应助swx采纳,获得10
19秒前
深情安青应助hhllhh采纳,获得10
19秒前
19秒前
20秒前
SWJ完成签到,获得积分10
21秒前
anxin完成签到 ,获得积分10
22秒前
wanci应助Ll采纳,获得10
22秒前
22秒前
Lucas应助Ll采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320711
求助须知:如何正确求助?哪些是违规求助? 4462526
关于积分的说明 13887138
捐赠科研通 4353537
什么是DOI,文献DOI怎么找? 2391240
邀请新用户注册赠送积分活动 1384892
关于科研通互助平台的介绍 1354655