A Hybrid Microstructure Piezoresistive Sensor with Machine Learning Approach for Gesture Recognition

触觉传感器 人工智能 计算机科学 压阻效应 机器人 灵活性(工程) 接口(物质) 机器学习 模式识别(心理学) 工程类 电气工程 数学 统计 最大气泡压力法 气泡 并行计算
作者
Yousef Al-Handarish,Olatunji Mumini Omisore,Jing Chen,Xiuqi Cao,Toluwanimi Oluwadara Akinyemi,Yan Yan,Lei Wang
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (16): 7264-7264 被引量:6
标识
DOI:10.3390/app11167264
摘要

Developments in flexible electronics have adopted various approaches which have enhanced the applicability of human–machine interface fields. Recently, microstructural integration and hybrid functional materials were designed for realizing human somatosensory. Nonetheless, designing tactile sensors with smart structures using facile and low-cost fabrication processes remains challenging. Furthermore, using the sensors for recognizing stimuli and feedback applications remains poorly validated. In this study, a highly flexible piezoresistive tactile sensor was developed by homogeneously dispersing carbon black (CB) in a microstructure porous sugar/PDMS-based sponge. Owning to its high flexibility and softness, the sensor can be mounted on human or robotic systems for different clinical applications. We validated the applicability of the proposed sensor by applying it to recognizing grasp and release forces in an open setting and to classifying hand motions that surgeons apply on the master interface of a robotic system during intravascular catheterization. For this purpose, we implemented the long short-term memory (LSTM)-dense classification model and five traditional machine learning methods, namely, support vector machine, multilayer perceptron, decision tree, and k-nearest neighbor. The models were used to classify the different hand gestures obtained in an open-setting experiment. Amongst all, the LSTM-dense method yielded the highest overall recognition accuracy (87.38%). Nevertheless, the performance of the other models was in a similar range, showing that our sensor structure can be applied in intelligence sensing or tactile feedback systems. Secondly, the sensor prototype was applied to analyze the motions made while manipulating an interventional robot. We analyzed the displacement and velocity of the master interface during typical axial (push/pull) and radial operations with the robot. The results obtained show that the sensor is capable of recording unique patterns during different operations. Thus, a combination of the flexible wearable sensors and machine learning could yield a future generation of flexible materials and artificial intelligence of things (AIoT) devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttm1983完成签到,获得积分10
1秒前
1秒前
1秒前
周周南完成签到 ,获得积分10
3秒前
隐形曼青应助起风了采纳,获得10
3秒前
七霖发布了新的文献求助30
3秒前
xvzhenyuan发布了新的文献求助10
3秒前
3秒前
柳叶刀完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
7秒前
7秒前
zg完成签到,获得积分10
7秒前
7秒前
ardejiang发布了新的文献求助10
8秒前
9秒前
小马甲应助含蓄的问寒采纳,获得10
9秒前
搜集达人应助专注寻菱采纳,获得10
9秒前
研友_841e4L发布了新的文献求助10
10秒前
yue发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
16秒前
jj完成签到,获得积分20
16秒前
Biu应助fifteen采纳,获得10
17秒前
Tomorrww发布了新的文献求助20
18秒前
专注寻菱发布了新的文献求助10
20秒前
姜忆霜完成签到 ,获得积分10
20秒前
榴莲完成签到,获得积分10
20秒前
七霖完成签到,获得积分10
20秒前
青山发布了新的文献求助10
21秒前
26秒前
迟迟完成签到,获得积分10
26秒前
27秒前
27秒前
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154407
求助须知:如何正确求助?哪些是违规求助? 2805321
关于积分的说明 7864166
捐赠科研通 2463472
什么是DOI,文献DOI怎么找? 1311341
科研通“疑难数据库(出版商)”最低求助积分说明 629556
版权声明 601821