A Hybrid Microstructure Piezoresistive Sensor with Machine Learning Approach for Gesture Recognition

触觉传感器 人工智能 计算机科学 压阻效应 机器人 灵活性(工程) 接口(物质) 机器学习 模式识别(心理学) 工程类 电气工程 数学 统计 最大气泡压力法 气泡 并行计算
作者
Yousef Al-Handarish,Olatunji Mumini Omisore,Jing Chen,Xiuqi Cao,Toluwanimi Oluwadara Akinyemi,Yan Yan,Lei Wang
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (16): 7264-7264 被引量:6
标识
DOI:10.3390/app11167264
摘要

Developments in flexible electronics have adopted various approaches which have enhanced the applicability of human–machine interface fields. Recently, microstructural integration and hybrid functional materials were designed for realizing human somatosensory. Nonetheless, designing tactile sensors with smart structures using facile and low-cost fabrication processes remains challenging. Furthermore, using the sensors for recognizing stimuli and feedback applications remains poorly validated. In this study, a highly flexible piezoresistive tactile sensor was developed by homogeneously dispersing carbon black (CB) in a microstructure porous sugar/PDMS-based sponge. Owning to its high flexibility and softness, the sensor can be mounted on human or robotic systems for different clinical applications. We validated the applicability of the proposed sensor by applying it to recognizing grasp and release forces in an open setting and to classifying hand motions that surgeons apply on the master interface of a robotic system during intravascular catheterization. For this purpose, we implemented the long short-term memory (LSTM)-dense classification model and five traditional machine learning methods, namely, support vector machine, multilayer perceptron, decision tree, and k-nearest neighbor. The models were used to classify the different hand gestures obtained in an open-setting experiment. Amongst all, the LSTM-dense method yielded the highest overall recognition accuracy (87.38%). Nevertheless, the performance of the other models was in a similar range, showing that our sensor structure can be applied in intelligence sensing or tactile feedback systems. Secondly, the sensor prototype was applied to analyze the motions made while manipulating an interventional robot. We analyzed the displacement and velocity of the master interface during typical axial (push/pull) and radial operations with the robot. The results obtained show that the sensor is capable of recording unique patterns during different operations. Thus, a combination of the flexible wearable sensors and machine learning could yield a future generation of flexible materials and artificial intelligence of things (AIoT) devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助lyt采纳,获得10
1秒前
WJ发布了新的文献求助10
2秒前
3秒前
dbq完成签到 ,获得积分10
3秒前
Owen应助reck采纳,获得10
5秒前
王淳完成签到 ,获得积分10
5秒前
6秒前
7秒前
高高的天亦完成签到 ,获得积分10
8秒前
追寻书白完成签到,获得积分20
9秒前
晚街听风完成签到 ,获得积分10
10秒前
10秒前
感觉他香香的完成签到 ,获得积分10
11秒前
11秒前
牛牛要当院士喽完成签到,获得积分10
11秒前
结实的老虎完成签到,获得积分10
13秒前
坚强丹雪完成签到,获得积分10
15秒前
17秒前
19秒前
WZ0904发布了新的文献求助10
21秒前
狂野静曼完成签到 ,获得积分10
22秒前
武映易完成签到 ,获得积分10
24秒前
zzz发布了新的文献求助10
25秒前
26秒前
大蒜味酸奶钊完成签到 ,获得积分10
26秒前
鱼宇纸完成签到 ,获得积分10
26秒前
LEE完成签到,获得积分20
26秒前
26秒前
Ava应助无限的绿真采纳,获得10
28秒前
小马甲应助xiongdi521采纳,获得10
28秒前
科研通AI5应助陶醉觅夏采纳,获得200
31秒前
憨鬼憨切发布了新的文献求助10
31秒前
31秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
33秒前
34秒前
35秒前
hh应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
Ava应助科研通管家采纳,获得10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849