An Estimation of Ship Collision Risk Based on Relevance Vector Machine

碰撞 支持向量机 相关向量机 计算机科学 避碰 相关性(法律) 机器学习 概率逻辑 人工智能 计算机安全 政治学 法学
作者
Jinwan Park,Jung-Sik Jeong
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:9 (5): 538-538 被引量:24
标识
DOI:10.3390/jmse9050538
摘要

According to the statistics of maritime collision accidents over the last five years (2016–2020), 95% of the total maritime collision accidents are caused by human factors. Machine learning algorithms are an emerging approach in judging the risk of collision among vessels and supporting reliable decision-making prior to any behaviors for collision avoidance. As the result, it can be a good method to reduce errors caused by navigators’ carelessness. This article aims to propose an enhanced machine learning method to estimate ship collision risk and to support more reliable decision-making for ship collision risk. In order to estimate the ship collision risk, the conventional support vector machine (SVM) was applied. Regardless of the advantage of the SVM to resolve the uncertainty problem by using the collected ships’ parameters, it has inherent weak points. In this study, the relevance vector machine (RVM), which can present reliable probabilistic results based on Bayesian theory, was applied to estimate the collision risk. The proposed method was compared with the results of applying the SVM. It showed that the estimation model using RVM is more accurate and efficient than the model using SVM. We expect to support the reasonable decision-making of the navigator through more accurate risk estimation, thus allowing early evasive actions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛普森完成签到,获得积分20
1秒前
吃饱睡好发布了新的文献求助10
1秒前
无辜不言发布了新的文献求助10
2秒前
欢呼的盼旋完成签到,获得积分10
3秒前
无极微光应助CCS采纳,获得20
3秒前
香蕉觅云应助Yee采纳,获得10
3秒前
老迟到的土豆完成签到 ,获得积分10
4秒前
xuzhu0907完成签到,获得积分10
4秒前
共享精神应助陈龙平采纳,获得10
4秒前
lina发布了新的文献求助10
4秒前
Denny完成签到,获得积分10
5秒前
qiaoj2006完成签到,获得积分10
5秒前
家伟完成签到,获得积分10
5秒前
6秒前
7秒前
隐形曼青应助游大达采纳,获得10
7秒前
薇薇完成签到,获得积分10
8秒前
Cathy完成签到,获得积分10
8秒前
9秒前
milaiii发布了新的文献求助10
9秒前
发炎的扁桃体完成签到,获得积分10
10秒前
橙花完成签到 ,获得积分10
11秒前
keke发布了新的文献求助20
11秒前
胡图图发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
小桃耶完成签到,获得积分10
12秒前
surfing发布了新的文献求助10
12秒前
asdfghjkl完成签到,获得积分10
13秒前
大模型应助中心湖小海棠采纳,获得10
13秒前
14秒前
充电宝应助初余采纳,获得10
15秒前
Wendy发布了新的文献求助10
16秒前
16秒前
biubiu26发布了新的文献求助10
16秒前
rong发布了新的文献求助10
16秒前
Cathy发布了新的文献求助10
17秒前
17秒前
啃猫爪发布了新的文献求助30
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458