An Estimation of Ship Collision Risk Based on Relevance Vector Machine

碰撞 支持向量机 相关向量机 计算机科学 避碰 相关性(法律) 机器学习 概率逻辑 人工智能 计算机安全 政治学 法学
作者
Jinwan Park,Jung-Sik Jeong
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:9 (5): 538-538 被引量:24
标识
DOI:10.3390/jmse9050538
摘要

According to the statistics of maritime collision accidents over the last five years (2016–2020), 95% of the total maritime collision accidents are caused by human factors. Machine learning algorithms are an emerging approach in judging the risk of collision among vessels and supporting reliable decision-making prior to any behaviors for collision avoidance. As the result, it can be a good method to reduce errors caused by navigators’ carelessness. This article aims to propose an enhanced machine learning method to estimate ship collision risk and to support more reliable decision-making for ship collision risk. In order to estimate the ship collision risk, the conventional support vector machine (SVM) was applied. Regardless of the advantage of the SVM to resolve the uncertainty problem by using the collected ships’ parameters, it has inherent weak points. In this study, the relevance vector machine (RVM), which can present reliable probabilistic results based on Bayesian theory, was applied to estimate the collision risk. The proposed method was compared with the results of applying the SVM. It showed that the estimation model using RVM is more accurate and efficient than the model using SVM. We expect to support the reasonable decision-making of the navigator through more accurate risk estimation, thus allowing early evasive actions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Owen应助小智采纳,获得10
刚刚
激动的晓筠完成签到,获得积分10
1秒前
郭梓韵发布了新的文献求助10
1秒前
diu应助LZHWSND采纳,获得10
1秒前
大个应助乙二胺四乙酸采纳,获得10
2秒前
2秒前
Verdigris完成签到,获得积分10
2秒前
旺仔发布了新的文献求助10
2秒前
科研通AI2S应助橘猫采纳,获得10
4秒前
陈宝宝完成签到,获得积分10
5秒前
可靠往事完成签到,获得积分10
6秒前
6秒前
6秒前
一一应助梦璃采纳,获得10
6秒前
lcls完成签到,获得积分10
6秒前
7秒前
7秒前
9秒前
9秒前
10秒前
11秒前
11秒前
11秒前
单薄的南蕾完成签到 ,获得积分10
11秒前
QingGuo发布了新的文献求助30
12秒前
吱吱发布了新的文献求助10
12秒前
12秒前
12秒前
x跳完成签到,获得积分10
13秒前
华仔应助yanzinie采纳,获得10
13秒前
王艺霖完成签到 ,获得积分10
13秒前
ccWang发布了新的文献求助10
14秒前
chufan发布了新的文献求助10
14秒前
郭梓韵完成签到,获得积分10
14秒前
15秒前
15秒前
小宋发布了新的文献求助10
15秒前
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243931
求助须知:如何正确求助?哪些是违规求助? 2887823
关于积分的说明 8249972
捐赠科研通 2556414
什么是DOI,文献DOI怎么找? 1384595
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625907