A data-driven operational model for traffic at the Dallas Fort Worth International Airport

自回归积分移动平均 微模拟 运输工程 交通拥挤 计算机科学 需求预测 空中交通管制 运筹学 工程类 时间序列 机器学习 航空航天工程
作者
Monte Lunacek,Lindy Williams,Joseph Severino,Karen Ficenec,Juliette Ugirumurera,Matthew Eash,Yanbo Ge,Caleb Phillips
出处
期刊:Journal of Air Transport Management [Elsevier]
卷期号:94: 102061-102061 被引量:11
标识
DOI:10.1016/j.jairtraman.2021.102061
摘要

Airports are on the front line of significant innovations, allowing the movement of more people and goods faster, cheaper, and with greater convenience. As air travel continues to grow, airports will face challenges in responding to increasing passenger vehicle traffic, which leads to lower operational efficiency, poor air quality, and security concerns. This paper evaluates methods for traffic demand forecasting combined with traffic microsimulation, which will allow airport operations staff to accurately predict traffic and congestion. Using two years of detailed data describing individual vehicle arrivals and departures, aircraft movements, and weather at Dallas-Fort Worth (DFW) International Airport, we evaluate multiple prediction methods including the Auto Regressive Integrated Moving Average (ARIMA) family of models, traditional machine learning models, and DeepAR, a modern recurrent neural network (RNN). We find that these algorithms are able to capture the diurnal trends in the surface traffic, and all do very well when predicting the next 30 minutes of demand. Longer forecast horizons are moderately effective, demonstrating the challenge of this problem and highlighting promising techniques as well as potential areas for improvement. Traffic demand is not the only factor that contributes to terminal congestion, because temporary changes to the road network, such as a lane closure, can make benign traffic demand highly congested. Combining a demand forecast with a traffic microsimulation framework provides a complete picture of traffic and its consequences. The result is an operational intelligence platform for exploring policy changes, as well as infrastructure expansion and disruption scenarios. To demonstrate the value of this approach, we present results from a case study at DFW Airport assessing the impact of a policy change for vehicle routing in high demand scenarios. This framework can assist airports like DFW as they tackle daily operational challenges, as well as explore the integration of emerging technology and expansion of their services into long term plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一独白完成签到,获得积分10
1秒前
在水一方应助坚强的樱采纳,获得10
1秒前
慕青应助尼亚吉拉采纳,获得10
2秒前
快乐小白菜应助甜酱采纳,获得10
2秒前
2秒前
qq应助毛慢慢采纳,获得10
3秒前
3秒前
科研通AI5应助吴岳采纳,获得10
3秒前
天天快乐应助ufuon采纳,获得10
4秒前
科研通AI5应助一独白采纳,获得10
5秒前
hearts_j完成签到,获得积分10
5秒前
FashionBoy应助yasan采纳,获得10
5秒前
安琪琪完成签到,获得积分10
6秒前
6秒前
端庄千琴完成签到,获得积分10
6秒前
gaogao完成签到,获得积分10
6秒前
菲菲公主完成签到,获得积分10
7秒前
7秒前
7秒前
英姑应助柒八染采纳,获得10
8秒前
退堂鼓发布了新的文献求助10
8秒前
党弛完成签到,获得积分10
8秒前
8秒前
9秒前
烂漫的松完成签到,获得积分10
9秒前
cheryl完成签到,获得积分10
9秒前
笑笑发布了新的文献求助10
10秒前
11秒前
12秒前
糟糕的霆完成签到 ,获得积分10
12秒前
婷婷发布了新的文献求助10
12秒前
12秒前
Anxinxin发布了新的文献求助10
12秒前
CipherSage应助xyz采纳,获得10
13秒前
13秒前
脑洞疼应助mjj采纳,获得10
13秒前
good关注了科研通微信公众号
14秒前
14秒前
punchline完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762