A data-driven operational model for traffic at the Dallas Fort Worth International Airport

自回归积分移动平均 微模拟 运输工程 交通拥挤 计算机科学 需求预测 空中交通管制 运筹学 工程类 时间序列 机器学习 航空航天工程
作者
Monte Lunacek,Lindy Williams,Joseph Severino,Karen Ficenec,Juliette Ugirumurera,Matthew Eash,Yanbo Ge,Caleb Phillips
出处
期刊:Journal of Air Transport Management [Elsevier]
卷期号:94: 102061-102061 被引量:11
标识
DOI:10.1016/j.jairtraman.2021.102061
摘要

Airports are on the front line of significant innovations, allowing the movement of more people and goods faster, cheaper, and with greater convenience. As air travel continues to grow, airports will face challenges in responding to increasing passenger vehicle traffic, which leads to lower operational efficiency, poor air quality, and security concerns. This paper evaluates methods for traffic demand forecasting combined with traffic microsimulation, which will allow airport operations staff to accurately predict traffic and congestion. Using two years of detailed data describing individual vehicle arrivals and departures, aircraft movements, and weather at Dallas-Fort Worth (DFW) International Airport, we evaluate multiple prediction methods including the Auto Regressive Integrated Moving Average (ARIMA) family of models, traditional machine learning models, and DeepAR, a modern recurrent neural network (RNN). We find that these algorithms are able to capture the diurnal trends in the surface traffic, and all do very well when predicting the next 30 minutes of demand. Longer forecast horizons are moderately effective, demonstrating the challenge of this problem and highlighting promising techniques as well as potential areas for improvement. Traffic demand is not the only factor that contributes to terminal congestion, because temporary changes to the road network, such as a lane closure, can make benign traffic demand highly congested. Combining a demand forecast with a traffic microsimulation framework provides a complete picture of traffic and its consequences. The result is an operational intelligence platform for exploring policy changes, as well as infrastructure expansion and disruption scenarios. To demonstrate the value of this approach, we present results from a case study at DFW Airport assessing the impact of a policy change for vehicle routing in high demand scenarios. This framework can assist airports like DFW as they tackle daily operational challenges, as well as explore the integration of emerging technology and expansion of their services into long term plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到,获得积分10
刚刚
和谐的柏柳完成签到,获得积分10
1秒前
ZEXAL发布了新的文献求助10
1秒前
zjx完成签到,获得积分10
1秒前
疯狂的绝山完成签到,获得积分10
1秒前
1秒前
Robin发布了新的文献求助30
2秒前
ccm应助李喜喜采纳,获得10
3秒前
我是老大应助tong采纳,获得10
4秒前
LSY完成签到,获得积分10
4秒前
熙子完成签到 ,获得积分10
4秒前
5秒前
5秒前
爱学习的小李完成签到,获得积分10
7秒前
qy完成签到,获得积分10
7秒前
小不溜完成签到,获得积分10
7秒前
细腻代真发布了新的文献求助10
8秒前
yh完成签到,获得积分10
8秒前
橙子完成签到,获得积分20
8秒前
Comrade_ZZD发布了新的文献求助10
8秒前
tracer发布了新的文献求助10
9秒前
心安完成签到,获得积分10
9秒前
星辰大海应助why采纳,获得10
9秒前
10秒前
tigger完成签到 ,获得积分10
10秒前
聪明白羊完成签到,获得积分10
10秒前
医只兔发布了新的文献求助10
10秒前
zzz发布了新的文献求助10
11秒前
天天快乐应助cream采纳,获得10
11秒前
花道完成签到,获得积分10
11秒前
lisier发布了新的文献求助10
12秒前
Robin完成签到,获得积分10
12秒前
12秒前
hlchian完成签到,获得积分10
12秒前
Sophia完成签到,获得积分10
12秒前
害羞耷完成签到,获得积分10
13秒前
13秒前
生信难民完成签到,获得积分10
14秒前
田様应助XXaaxxxx采纳,获得10
14秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799545
关于积分的说明 7835454
捐赠科研通 2456868
什么是DOI,文献DOI怎么找? 1307446
科研通“疑难数据库(出版商)”最低求助积分说明 628207
版权声明 601655