材料科学
电极
电解质
化学工程
MXenes公司
电化学
介电谱
X射线光电子能谱
超级电容器
分析化学(期刊)
纳米技术
化学
物理化学
色谱法
工程类
作者
Zhiqian Cao,Jimin Fu,Mingzai Wu,Tao Hua,Haibo Hu
标识
DOI:10.1016/j.ensm.2021.04.047
摘要
Sluggish divalent charges (e.g., Zn2+) diffusion within MXene host electrodes due to the larger sizes and stronger coulomb interactions compared to those of dominant univalent charges is an essential issue in developing MXene-based microsupercapacitors (MSCs) of higher theoretical energy densities. Herein, MXene/bacterial cellulose fiber (BCF) hybrid films with effectively expanded interlayer spacing between re-stacked few-layered MXene sheets via homogeneous intercalation of BCF nanospacer were designed and prepared. The electrochemical testing and molecular dynamics simulation demonstrated the consequently widened ions-transport-channels between few-layered MXene sheets can effectively reduce the diffusion barrier of Zn2+ within the MXene/BCF host electrodes compared to pure MXene film electrodes without BCF nanospacer. Further in-situ Raman and ex-situ XPS spectroscopy characterizations suggest: the consequently accelerated Zn2+ diffusion involved adsorption/desorption featured charge storage, and followed electrochemical reaction of Zn2+ with oxygen terminal groups on the MXene flakes induced additional pseudocapacitance within the MXene/BCF host electrodes simultaneously contribute to the acquired superior areal capacitance of the fabricated symmetrical aqueous Zn-ions MSCs (ZMSCs) based on the MXene/BCF host electrodes and Zn(CF3SO3)2/polyacrylamide hydrogel electrolyte. Meanwhile, combined with doubled voltage window (1.2 V) benefiting from the cocurrently suppressed kinetics of hydrogen/oxygen evolution within the MXene/BCF host electrodes, a tremendously increased areal energy density (34.0 μWh cm−2) in comparison with that employing conventional H2SO4/polyacrylamide hydrogel electrolyte (0.6 V/8.6 μWh cm−2) is finally realized. The work demonstrates a simple and effective strategy to synchronously boost bivalent Zn2+ diffusion and depress hydrogen/oxygen evolution within MXene host electrodes toward symmetric ZMSCs of high areal energy density.
科研通智能强力驱动
Strongly Powered by AbleSci AI