Nanoscale Wetting of Crystalline Cellulose

接触角 纤维素 纳米纤维素 润湿 材料科学 化学工程 溶剂 纳米尺度 氢键 分子 化学 纳米技术 复合材料 有机化学 工程类
作者
Lucas Nascimento Trentin,Caroline S. Pereira,Rodrigo L. Silveira,Stefan J. Hill,Mathias Sorieul,Munir S. Skaf
出处
期刊:Biomacromolecules [American Chemical Society]
卷期号:22 (10): 4251-4261 被引量:14
标识
DOI:10.1021/acs.biomac.1c00801
摘要

Cellulose possesses considerable potential for a wide range of sustainable applications. Nanocellulose-based material properties are primarily dependent on the structural surface characteristics of its crystalline planes. Experimental measurements of the affinity of crystalline nanocellulose surfaces with water are scarce and challenging to obtain. Therefore, the relative hydrophilicity of different cellulose allomorphs crystalline planes is often inferred from qualitative assessments of their surface and the exposition of polar groups to the solvent. This work investigates the relative hydrophilicity of cellulose surfaces using molecular dynamics simulations. The behavior of a water droplet laid on different crystal planes was used to determine their relative hydrophilicity. The water molecules fully spread onto highly hydrophilic surfaces. However, a water droplet placed on less hydrophilic surfaces equilibrates as an oblate spheroidal cap allowing the measurement of a contact angle. The results indicate that the Iα (010), Iα (11̅0), Iβ (010), and Iβ (110) faces, as well as the faces of human-made celluloses II and III_I (100), (11̅0), (010), and (110) are all highly hydrophilic. They all have a contact angle value inferior to 11°. Not unexpectedly, the Iα (001) and Iβ (100) surfaces are less hydrophilic with contact angles of 48 and 34°, respectively. However, the Iβ (11̅0) plane, often referred to as a hydrophilic surface, forms a contact angle of about 32°. The results are rationalized in terms of structure, exposure of hydroxyl groups to the solvent, and degree of cellulose–cellulose versus cellulose–water hydrogen bonds on each face. The simulations also show that the surface oxidation degree tunes the surface hydrophilicity in a nonlinear manner due to cooperative effects involving water–cellulose interactions. Our study helps us to understand how the degree of hydrophilicity of cellulose emerges from specific structural features of each crystalline surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助刻苦大西瓜采纳,获得10
刚刚
魁梧的大开完成签到,获得积分10
1秒前
1秒前
韩老慢完成签到,获得积分10
2秒前
heihei关注了科研通微信公众号
2秒前
深情安青应助小广采纳,获得10
3秒前
3秒前
Li完成签到,获得积分10
5秒前
7秒前
夜王完成签到,获得积分10
9秒前
STAUDINGER完成签到,获得积分20
9秒前
imevm完成签到,获得积分10
10秒前
小马甲应助zqy采纳,获得10
10秒前
11秒前
STAUDINGER发布了新的文献求助10
12秒前
小糯发布了新的文献求助10
12秒前
13秒前
yuan完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助不想取名字采纳,获得10
14秒前
15秒前
酷波er应助vine采纳,获得10
15秒前
飞猫发布了新的文献求助10
15秒前
夜王发布了新的文献求助10
15秒前
江畔何人初见月完成签到,获得积分20
15秒前
ning发布了新的文献求助10
16秒前
太阳想吃冰淇淋完成签到 ,获得积分10
17秒前
边瑞明发布了新的文献求助10
17秒前
tzjstar发布了新的文献求助10
18秒前
19秒前
19秒前
tmrrrrrr完成签到,获得积分10
20秒前
文艺鞋子完成签到,获得积分20
20秒前
20秒前
脑洞疼应助宁静的夏天采纳,获得30
21秒前
科研通AI2S应助Loscipy采纳,获得10
22秒前
文艺鞋子发布了新的文献求助10
23秒前
Laniakea完成签到,获得积分10
23秒前
colorfulblue完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125118
求助须知:如何正确求助?哪些是违规求助? 2775421
关于积分的说明 7726646
捐赠科研通 2430997
什么是DOI,文献DOI怎么找? 1291569
科研通“疑难数据库(出版商)”最低求助积分说明 622188
版权声明 600352