亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel tracking system for human following robots with fusion of MMW radar and monocular vision

计算机视觉 人工智能 计算机科学 机器人 传感器融合 雷达 跟踪系统 卡尔曼滤波器 电信
作者
Yipeng Zhu,Tao Wang,Shiqiang Zhu
出处
期刊:Industrial Robot-an International Journal [Emerald (MCB UP)]
卷期号:49 (1): 120-131 被引量:2
标识
DOI:10.1108/ir-02-2021-0030
摘要

Purpose This paper aims to develop a robust person tracking method for human following robots. The tracking system adopts the multimodal fusion results of millimeter wave (MMW) radars and monocular cameras for perception. A prototype of human following robot is developed and evaluated by using the proposed tracking system. Design/methodology/approach Limited by angular resolution, point clouds from MMW radars are too sparse to form features for human detection. Monocular cameras can provide semantic information for objects in view, but cannot provide spatial locations. Considering the complementarity of the two sensors, a sensor fusion algorithm based on multimodal data combination is proposed to identify and localize the target person under challenging conditions. In addition, a closed-loop controller is designed for the robot to follow the target person with expected distance. Findings A series of experiments under different circumstances are carried out to validate the fusion-based tracking method. Experimental results show that the average tracking errors are around 0.1 m. It is also found that the robot can handle different situations and overcome short-term interference, continually track and follow the target person. Originality/value This paper proposed a robust tracking system with the fusion of MMW radars and cameras. Interference such as occlusion and overlapping are well handled with the help of the velocity information from the radars. Compared to other state-of-the-art plans, the sensor fusion method is cost-effective and requires no additional tags with people. Its stable performance shows good application prospects in human following robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
7秒前
COMET完成签到,获得积分10
11秒前
16秒前
17秒前
斯文败类应助上善若水DT2采纳,获得10
18秒前
COMET发布了新的文献求助10
21秒前
21秒前
30秒前
58秒前
1分钟前
LeiYuanfang完成签到,获得积分10
1分钟前
豆豆发布了新的文献求助10
1分钟前
1分钟前
1分钟前
玄之又玄完成签到,获得积分10
1分钟前
年轻的凝云完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Amadeus发布了新的文献求助10
2分钟前
2分钟前
2分钟前
若雨凌风应助Amadeus采纳,获得30
2分钟前
大个应助Amadeus采纳,获得10
2分钟前
年轻的冰海完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
t铁核桃1985完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
奈思完成签到 ,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067253
捐赠科研通 2750111
什么是DOI,文献DOI怎么找? 1509039
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896