亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Differential abundance testing on single-cell data using k-nearest neighbor graphs

聚类分析 计算机科学 错误发现率 数据挖掘 工作流程 可扩展性 差速器(机械装置) 计算生物学 生物 软件 算法 人工智能 遗传学 物理 基因 热力学 数据库 程序设计语言
作者
Emma Dann,Neil C. Henderson,Sarah A. Teichmann,Michael D. Morgan,John C. Marioni
出处
期刊:Nature Biotechnology [Springer Nature]
卷期号:40 (2): 245-253 被引量:760
标识
DOI:10.1038/s41587-021-01033-z
摘要

Current computational workflows for comparative analyses of single-cell datasets typically use discrete clusters as input when testing for differential abundance among experimental conditions. However, clusters do not always provide the appropriate resolution and cannot capture continuous trajectories. Here we present Milo, a scalable statistical framework that performs differential abundance testing by assigning cells to partially overlapping neighborhoods on a k-nearest neighbor graph. Using simulations and single-cell RNA sequencing (scRNA-seq) data, we show that Milo can identify perturbations that are obscured by discretizing cells into clusters, that it maintains false discovery rate control across batch effects and that it outperforms alternative differential abundance testing strategies. Milo identifies the decline of a fate-biased epithelial precursor in the aging mouse thymus and identifies perturbations to multiple lineages in human cirrhotic liver. As Milo is based on a cell–cell similarity structure, it might also be applicable to single-cell data other than scRNA-seq. Milo is provided as an open-source R software package at https://github.com/MarioniLab/miloR . Milo identifies differentially abundant populations of cells in scRNA-seq data without clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无与伦比完成签到 ,获得积分10
10秒前
15秒前
16秒前
34秒前
Scheduling完成签到 ,获得积分10
46秒前
46秒前
碧蓝满天完成签到 ,获得积分10
54秒前
59秒前
1分钟前
1分钟前
1分钟前
空2完成签到 ,获得积分0
1分钟前
叶也完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
传奇3应助芒果瑞纳冰采纳,获得10
2分钟前
2分钟前
Chouvikin完成签到,获得积分10
2分钟前
2分钟前
桐夜完成签到 ,获得积分10
2分钟前
3分钟前
lqhccww发布了新的文献求助10
3分钟前
3分钟前
3分钟前
zilt1109发布了新的文献求助10
3分钟前
Orange应助龙06采纳,获得30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
chenyue233完成签到,获得积分10
4分钟前
怪僻完成签到 ,获得积分10
4分钟前
郗妫完成签到 ,获得积分10
4分钟前
4分钟前
丘比特应助溜溜采纳,获得10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509664
求助须知:如何正确求助?哪些是违规求助? 4604470
关于积分的说明 14489810
捐赠科研通 4539307
什么是DOI,文献DOI怎么找? 2487442
邀请新用户注册赠送积分活动 1469860
关于科研通互助平台的介绍 1442070