鲁米诺
化学发光
电化学发光
检出限
化学
生物传感器
材料科学
原位
纳米技术
纳米颗粒
色谱法
有机化学
作者
Tingting Zhuang,Huixin Zhang,Lun Wang,Linhan Yu,Zonghua Wang
标识
DOI:10.1007/s00216-021-03651-7
摘要
An efficient electrogenerated chemiluminescence (ECL) nanoprobe (luminol-Au NPs-Ti3C2) was constructed based on Ti3C2Tx MXene (Ti3C2)-mediated in situ formation of Au NPs and anchoring luminol to fabricate a sensitive ECL biosensor for miRNA-155 detection. Herein, Ti3C2 with rich Ti vacancy defects was used as reducing agent, and Au NPs were generated in situ and anchored on the Ti3C2 (Au NPs-Ti3C2). Moreover, the Au NPs-Ti3C2 composites were used as a carrier and provided a large number of sites for the efficient linking of luminol through Au–N bonds to form stable luminol-Au NPs-Ti3C2. The immobilization of ECL emitters is a versatile strategy which not only shortens the electron transmission distance between luminol and electrode, but also provides naked catalytic predominated (111) facets of Au NPs with high electrocatalytic activity, significantly improving the ECL signal of luminol. Furthermore, a catalytic hairpin assembly (CHA) reaction was used, resulting in further amplification of the signal. As a result, the as-prepared ECL biosensor exhibited a linear range from 0.3 fM to 1 nM with a detection limit of 0.15 fM, and demonstrated high reliability of miRNA-155 detection even in human serum samples. The construction of a multifunctional ECL probe with excellent ECL emission opens a new chapter for the application of Ti3C2 in the field of bioanalysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI