Chapter 38: Hydrothermal Gold Deposition in Epithermal, Carlin, and Orogenic Deposits

热液循环 溶解度 氧化剂 黄铁矿 过饱和度 化学 硫化 矿物学 浸出(土壤学) 地质学 无机化学 硫黄 土壤科学 土壤水分 地震学 有机化学
作者
Stuart F. Simmons,Benjamin M. Tutolo,Shaun L.L. Barker,Richard J. Goldfarb,F. Robert
标识
DOI:10.5382/sp.23.38
摘要

Abstract Epithermal, Carlin, and orogenic Au deposits form in diverse geologic settings and over a wide range of depths, where Au precipitates from hydrothermal fluids in response to various physical and chemical processes. The compositions of Au-bearing sulfidic hydrothermal solutions across all three deposit types, however, are broadly similar. In most cases, they comprise low-salinity waters, which are reduced, have a near-neutral pH, and CO2 concentrations that range from <4 to >10 wt %. Experimental studies show that the main factor controlling the concentration of Au in hydrothermal solutions is the concentration of reduced S, and in the absence of Fe-bearing minerals, Au solubility is insensitive to temperature. In a solution containing ~300 ppm H2S, the maximum concentration of Au is ~1 ppm, representing a reasonable upper limit for many ore-forming solutions. Where Fe-bearing minerals are being converted to pyrite, Au solubility decreases as temperature cools due to the decreasing concentration of reduced S. High Au concentrations (~500 ppb) can also be achieved in strongly oxidizing and strongly acidic chloride solutions, reflecting chemical conditions that only develop during intense hydrolytic leaching in magmatic-hydrothermal high-sulfidation epithermal environments. Gold is also soluble at low to moderate levels (10–100 ppb) over a relatively wide range of pH values and redox states. The chemical mechanisms which induce Au deposition are divided into two broad groups. One involves achieving states of Au supersaturation through perturbations in solution equilibria caused by physical and chemical processes, involving phase separation (boiling), fluid mixing, and pyrite deposition via sulfidation of Fe-bearing minerals. The second involves the sorption of ionic Au on to the surfaces of growing sulfide crystals, mainly arsenian pyrite. Both groups of mechanisms have capability to produce ore, with distinct mineralogical and geochemical characteristics. Gold transport and deposition processes in the Taupo Volcanic Zone, New Zealand, show how ore-grade concentrations of Au can accumulate by two different mechanisms of precipitation, phase separation and sorption, in three separate hydrothermal environments. Phase separation caused by flashing, induced by depressurization and associated with energetic fluid flow in geothermal wells, produces sulfide precipitates containing up to 6 wt.% Au from a hydrothermal solution containing a few ppb Au. Sorption on to As-Sb-S colloids produces precipitates containing tens to hundreds of ppm Au in the Champagne Pool hot spring. Sorption on to As-rich pyrite also leads to anomalous endowments of Au of up to 1 ppm in hydrothermally altered volcanic rocks occurring in the subsurface. In all of these environments, Au-undersaturated solutions produce anomalous concentrations of Au that match and surpass typical ore-grade concentrations, indicating that near-saturated concentrations of dissolved metal are not a prerequisite for generating economic deposits of Au. The causes of Au deposition in epithermal deposits are related to sharp temperature-pressure gradients that induce phase separation (boiling) and mixing. In Carlin deposits, Au deposition is controlled by surface chemistry and sorption processes on to rims of As-rich pyrite. In orogenic deposits, at least two Au-depositing mechanisms appear to produce ore; one involves phase separation and the other involves sulfidation reactions during water-rock interaction that produces pyrite; a third mechanism involving codeposition of Au-As in sulfides might also be important. Differences in the regimes of hydrothermal fluid flow combined with mechanisms of Au precipitation play an important role in shaping the dimensions and geometries of ore zones. There is also a strong link between Au-depositing mechanisms and metallurgical characteristics of ores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leo完成签到,获得积分10
刚刚
1秒前
淘气科研发布了新的文献求助10
1秒前
小徐801完成签到,获得积分10
1秒前
2秒前
2秒前
wwk完成签到,获得积分10
2秒前
光亮不平完成签到,获得积分10
3秒前
llwxx完成签到,获得积分10
3秒前
梁大海发布了新的文献求助10
3秒前
甜蜜的楷瑞应助_hhhjhhh采纳,获得10
4秒前
諵十一完成签到,获得积分10
4秒前
zqingqing完成签到,获得积分10
5秒前
yize完成签到,获得积分10
6秒前
7秒前
7秒前
崔悦欣发布了新的文献求助10
7秒前
谨慎的擎宇完成签到,获得积分10
8秒前
Thomas完成签到,获得积分10
9秒前
小白鞋完成签到 ,获得积分10
9秒前
maying0318发布了新的文献求助10
11秒前
宣以晴完成签到,获得积分10
11秒前
Nnn完成签到,获得积分10
12秒前
baby完成签到,获得积分10
15秒前
123完成签到,获得积分10
15秒前
16秒前
学术牛马完成签到,获得积分10
16秒前
sl发布了新的文献求助10
18秒前
完美的鹤完成签到,获得积分10
19秒前
hky完成签到,获得积分10
20秒前
TTTHANKS完成签到 ,获得积分10
21秒前
WW完成签到,获得积分10
21秒前
LL完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
小马的可爱老婆2完成签到,获得积分10
22秒前
缥缈纲完成签到,获得积分10
23秒前
TY完成签到 ,获得积分10
23秒前
迷路的小蚂蚁完成签到,获得积分10
24秒前
哈儿的跟班完成签到,获得积分10
24秒前
醉熏的鑫完成签到,获得积分20
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029