Chapter 38: Hydrothermal Gold Deposition in Epithermal, Carlin, and Orogenic Deposits

热液循环 溶解度 氧化剂 黄铁矿 过饱和度 化学 硫化 矿物学 浸出(土壤学) 地质学 无机化学 硫黄 土壤科学 土壤水分 地震学 有机化学
作者
Stuart F. Simmons,Benjamin M. Tutolo,Shaun L.L. Barker,Richard J. Goldfarb,F. Robert
标识
DOI:10.5382/sp.23.38
摘要

Abstract Epithermal, Carlin, and orogenic Au deposits form in diverse geologic settings and over a wide range of depths, where Au precipitates from hydrothermal fluids in response to various physical and chemical processes. The compositions of Au-bearing sulfidic hydrothermal solutions across all three deposit types, however, are broadly similar. In most cases, they comprise low-salinity waters, which are reduced, have a near-neutral pH, and CO2 concentrations that range from <4 to >10 wt %. Experimental studies show that the main factor controlling the concentration of Au in hydrothermal solutions is the concentration of reduced S, and in the absence of Fe-bearing minerals, Au solubility is insensitive to temperature. In a solution containing ~300 ppm H2S, the maximum concentration of Au is ~1 ppm, representing a reasonable upper limit for many ore-forming solutions. Where Fe-bearing minerals are being converted to pyrite, Au solubility decreases as temperature cools due to the decreasing concentration of reduced S. High Au concentrations (~500 ppb) can also be achieved in strongly oxidizing and strongly acidic chloride solutions, reflecting chemical conditions that only develop during intense hydrolytic leaching in magmatic-hydrothermal high-sulfidation epithermal environments. Gold is also soluble at low to moderate levels (10–100 ppb) over a relatively wide range of pH values and redox states. The chemical mechanisms which induce Au deposition are divided into two broad groups. One involves achieving states of Au supersaturation through perturbations in solution equilibria caused by physical and chemical processes, involving phase separation (boiling), fluid mixing, and pyrite deposition via sulfidation of Fe-bearing minerals. The second involves the sorption of ionic Au on to the surfaces of growing sulfide crystals, mainly arsenian pyrite. Both groups of mechanisms have capability to produce ore, with distinct mineralogical and geochemical characteristics. Gold transport and deposition processes in the Taupo Volcanic Zone, New Zealand, show how ore-grade concentrations of Au can accumulate by two different mechanisms of precipitation, phase separation and sorption, in three separate hydrothermal environments. Phase separation caused by flashing, induced by depressurization and associated with energetic fluid flow in geothermal wells, produces sulfide precipitates containing up to 6 wt.% Au from a hydrothermal solution containing a few ppb Au. Sorption on to As-Sb-S colloids produces precipitates containing tens to hundreds of ppm Au in the Champagne Pool hot spring. Sorption on to As-rich pyrite also leads to anomalous endowments of Au of up to 1 ppm in hydrothermally altered volcanic rocks occurring in the subsurface. In all of these environments, Au-undersaturated solutions produce anomalous concentrations of Au that match and surpass typical ore-grade concentrations, indicating that near-saturated concentrations of dissolved metal are not a prerequisite for generating economic deposits of Au. The causes of Au deposition in epithermal deposits are related to sharp temperature-pressure gradients that induce phase separation (boiling) and mixing. In Carlin deposits, Au deposition is controlled by surface chemistry and sorption processes on to rims of As-rich pyrite. In orogenic deposits, at least two Au-depositing mechanisms appear to produce ore; one involves phase separation and the other involves sulfidation reactions during water-rock interaction that produces pyrite; a third mechanism involving codeposition of Au-As in sulfides might also be important. Differences in the regimes of hydrothermal fluid flow combined with mechanisms of Au precipitation play an important role in shaping the dimensions and geometries of ore zones. There is also a strong link between Au-depositing mechanisms and metallurgical characteristics of ores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cm给cm的求助进行了留言
刚刚
1秒前
1秒前
芍药药完成签到,获得积分20
1秒前
潇洒紫槐完成签到,获得积分10
2秒前
懒羊羊发布了新的文献求助10
2秒前
123完成签到,获得积分10
3秒前
hx应助维拉帕米橘子采纳,获得10
3秒前
wei完成签到,获得积分10
3秒前
大模型应助CARL采纳,获得10
4秒前
小陈完成签到 ,获得积分10
6秒前
7秒前
7秒前
白梓完成签到,获得积分10
7秒前
9秒前
inCHident发布了新的文献求助10
9秒前
9秒前
儒雅晓霜发布了新的文献求助10
11秒前
11秒前
Xxxxzzz发布了新的文献求助30
12秒前
12秒前
12秒前
菠萝萝萝王子完成签到,获得积分10
13秒前
烟花应助jiangzhixia采纳,获得200
13秒前
酷波er应助如初采纳,获得10
14秒前
CARL发布了新的文献求助10
14秒前
细腻的歌曲完成签到,获得积分10
15秒前
16秒前
梅卡完成签到 ,获得积分10
17秒前
皮代谷发布了新的文献求助10
17秒前
何呵呵发布了新的文献求助10
18秒前
21秒前
genomed给有魅力荟的求助进行了留言
23秒前
25秒前
情怀应助艾斯喜爱采纳,获得10
26秒前
希望天下0贩的0应助Elijah采纳,获得10
27秒前
ZQ发布了新的文献求助10
28秒前
29秒前
29秒前
充电宝应助典雅的如南采纳,获得10
29秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416783
求助须知:如何正确求助?哪些是违规求助? 3018648
关于积分的说明 8884570
捐赠科研通 2705843
什么是DOI,文献DOI怎么找? 1483963
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681060