清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Chapter 38: Hydrothermal Gold Deposition in Epithermal, Carlin, and Orogenic Deposits

热液循环 溶解度 氧化剂 黄铁矿 过饱和度 化学 硫化 矿物学 浸出(土壤学) 地质学 无机化学 硫黄 土壤科学 土壤水分 地震学 有机化学
作者
Stuart F. Simmons,Benjamin M. Tutolo,Shaun L.L. Barker,Richard J. Goldfarb,F. Robert
标识
DOI:10.5382/sp.23.38
摘要

Abstract Epithermal, Carlin, and orogenic Au deposits form in diverse geologic settings and over a wide range of depths, where Au precipitates from hydrothermal fluids in response to various physical and chemical processes. The compositions of Au-bearing sulfidic hydrothermal solutions across all three deposit types, however, are broadly similar. In most cases, they comprise low-salinity waters, which are reduced, have a near-neutral pH, and CO2 concentrations that range from <4 to >10 wt %. Experimental studies show that the main factor controlling the concentration of Au in hydrothermal solutions is the concentration of reduced S, and in the absence of Fe-bearing minerals, Au solubility is insensitive to temperature. In a solution containing ~300 ppm H2S, the maximum concentration of Au is ~1 ppm, representing a reasonable upper limit for many ore-forming solutions. Where Fe-bearing minerals are being converted to pyrite, Au solubility decreases as temperature cools due to the decreasing concentration of reduced S. High Au concentrations (~500 ppb) can also be achieved in strongly oxidizing and strongly acidic chloride solutions, reflecting chemical conditions that only develop during intense hydrolytic leaching in magmatic-hydrothermal high-sulfidation epithermal environments. Gold is also soluble at low to moderate levels (10–100 ppb) over a relatively wide range of pH values and redox states. The chemical mechanisms which induce Au deposition are divided into two broad groups. One involves achieving states of Au supersaturation through perturbations in solution equilibria caused by physical and chemical processes, involving phase separation (boiling), fluid mixing, and pyrite deposition via sulfidation of Fe-bearing minerals. The second involves the sorption of ionic Au on to the surfaces of growing sulfide crystals, mainly arsenian pyrite. Both groups of mechanisms have capability to produce ore, with distinct mineralogical and geochemical characteristics. Gold transport and deposition processes in the Taupo Volcanic Zone, New Zealand, show how ore-grade concentrations of Au can accumulate by two different mechanisms of precipitation, phase separation and sorption, in three separate hydrothermal environments. Phase separation caused by flashing, induced by depressurization and associated with energetic fluid flow in geothermal wells, produces sulfide precipitates containing up to 6 wt.% Au from a hydrothermal solution containing a few ppb Au. Sorption on to As-Sb-S colloids produces precipitates containing tens to hundreds of ppm Au in the Champagne Pool hot spring. Sorption on to As-rich pyrite also leads to anomalous endowments of Au of up to 1 ppm in hydrothermally altered volcanic rocks occurring in the subsurface. In all of these environments, Au-undersaturated solutions produce anomalous concentrations of Au that match and surpass typical ore-grade concentrations, indicating that near-saturated concentrations of dissolved metal are not a prerequisite for generating economic deposits of Au. The causes of Au deposition in epithermal deposits are related to sharp temperature-pressure gradients that induce phase separation (boiling) and mixing. In Carlin deposits, Au deposition is controlled by surface chemistry and sorption processes on to rims of As-rich pyrite. In orogenic deposits, at least two Au-depositing mechanisms appear to produce ore; one involves phase separation and the other involves sulfidation reactions during water-rock interaction that produces pyrite; a third mechanism involving codeposition of Au-As in sulfides might also be important. Differences in the regimes of hydrothermal fluid flow combined with mechanisms of Au precipitation play an important role in shaping the dimensions and geometries of ore zones. There is also a strong link between Au-depositing mechanisms and metallurgical characteristics of ores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然一德完成签到,获得积分10
8秒前
清秀灵薇完成签到,获得积分10
11秒前
mathmotive完成签到,获得积分20
14秒前
丁老三完成签到 ,获得积分10
14秒前
fei完成签到 ,获得积分10
28秒前
三个气的大门完成签到 ,获得积分10
36秒前
幽默滑板完成签到,获得积分10
43秒前
郭俊秀完成签到 ,获得积分10
51秒前
胡可完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
梵莫发布了新的文献求助10
1分钟前
Wen完成签到 ,获得积分10
1分钟前
云下完成签到 ,获得积分10
1分钟前
aaiirrii完成签到,获得积分10
1分钟前
浚稚完成签到 ,获得积分10
2分钟前
Sandy应助土豆··采纳,获得20
2分钟前
WittingGU完成签到,获得积分0
2分钟前
仁和完成签到 ,获得积分10
2分钟前
2分钟前
噼里啪啦完成签到 ,获得积分10
2分钟前
小龙仔123完成签到 ,获得积分20
3分钟前
大水完成签到 ,获得积分10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
通科研完成签到 ,获得积分10
3分钟前
aq22完成签到 ,获得积分10
3分钟前
xdd完成签到 ,获得积分10
3分钟前
风华完成签到,获得积分10
3分钟前
3分钟前
herpes完成签到 ,获得积分10
3分钟前
GGBond完成签到 ,获得积分10
3分钟前
livinglast完成签到 ,获得积分10
4分钟前
4分钟前
Rondab应助雪山飞龙采纳,获得10
4分钟前
梵莫完成签到,获得积分10
4分钟前
sherry完成签到 ,获得积分10
4分钟前
Young完成签到 ,获得积分10
4分钟前
xue完成签到 ,获得积分10
4分钟前
丘比特应助科研通管家采纳,获得10
4分钟前
林利芳完成签到 ,获得积分0
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968521
求助须知:如何正确求助?哪些是违规求助? 3513341
关于积分的说明 11167298
捐赠科研通 3248700
什么是DOI,文献DOI怎么找? 1794434
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664