化学
催化作用
加氢脱氧
路易斯酸
氢解
戊酸
多相催化
有机化学
无机化学
药物化学
选择性
丁酸
作者
Anna Vikár,Hanna E. Solt,Gyula Novodárszki,Magdolna R. Mihályi,Róbert Barthos,Attila Domján,Jenő Hancsók,József Valyon,Ferenc Lónyi
标识
DOI:10.1016/j.jcat.2021.08.052
摘要
The mechanism of catalytic hydrodeoxygenation (HDO) of fats, vegetable oils, and fatty acids was studied using alumina-supported Pd catalysts and tricaprylin and valeric acid as model reactants. The chemistry of fatty acid/catalyst interaction was studied by quasi-operando Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The Pd/γ–Al2O3 catalyst showed good activity in the hydrogenolysis reaction of the ester bonds to convert tricaprylin to caprylic acid, but they were of poor activity in the consecutive hydrodeoxygenation (HDO) of the acid to paraffin. The surface modification of the support alumina by phosphate groups significantly increased the HDO activity of the Pd catalyst and, consequently, the paraffin yield. The activity change was accounted partly for the partial replacement of the weak base Al–OH groups by weak acid P–OH groups but mainly for the partial elimination of Lewis acid (Al⊕) – Lewis base (O⊝) pair sites on the surface of the support. Both surface Al–OH and P–OH groups were shown to participate in the reaction with carboxylic acid and formed bidentate surface carboxylate species, which further reacted with hydrogen to give paraffin. Carboxylates of less basic surface sites were found to be more prone to HDO reaction than those of strong base sites. Monodentate carboxylates, formed on Al⊕ O⊝ pair sites were of low reactivity. Phosphatizing eliminated most of the Lewis type acid-base pair sites, therefore, reactive bidentate carboxylates represented the most abundant surface intermediate (MASI) during the HDO reaction of triglyceride. The hydroxyl coverage of the carboxylated surface was shown to become somewhat higher under steady-state reaction conditions. The increased hydroxyl coverage implies that C–O bond hydrogenolysis of the surface carboxylate proceeds, regenerating OH groups and forming aldehyde that could be intermediate of paraffin formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI