Flood damage assessment with Sentinel-1 and Sentinel-2 data after Sardoba dam break with GLCM features and Random Forest method

大洪水 合成孔径雷达 遥感 随机森林 环境科学 多光谱图像 水文学(农业) 地理 地质学 计算机科学 人工智能 考古 岩土工程
作者
Beste Tavus,Sultan Kocaman,Candan Gökçeoğlu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:816: 151585-151585 被引量:47
标识
DOI:10.1016/j.scitotenv.2021.151585
摘要

Accurate mapping and monitoring of flooded areas are immensely required for disaster management purposes, such as for damage assessment and mitigation. In this study, the flood damage mapping performances of two satellite Earth Observation sensors, i.e., European Space Agency's Sentinel-1 (S1) synthetic aperture radar (SAR) and Sentinel-2 (S2) multispectral optical instruments, were evaluated using the Random Forest (RF) supervised classification method and various feature types. The study area was Sardoba Reservoir (Uzbekistan) and its surroundings, in which a disastrous dam failure occurred on May 1, 2020. After the failure of a part of the earthfill dam, a large region with settlements and agricultural areas in Uzbekistan and Kazakhstan was flooded. S1 and S2 cloudless data with a short temporal interval acquired soon after the event were available for the area. Four different data availability scenarios, such as (i) only S1 pre- and post-flood data; (ii) only S2 pre- and post-flood data; (iii) S1 pre- and post-flood and S2 pre-flood data; and (iv) S1 and S2 pre- and post-flood data were evaluated in terms of classification accuracy. In addition to the polarization information of S1 and the intensity values of S2 bands, feature maps produced from these datasets, such as vegetation and water indices, textural information obtained from gray level co-occurrence matrix (GLCM), and the principal component analysis (PCA) bands were employed in the RF method. The results show that the fusion of S1 and S2 data exhibit very high classification accuracy for the flooded areas and can separate the inundated vegetation as well. The use of S2 pre-event data together with the S1 pre- and post-event data is recommended for obtaining high accuracy even when post-event optical data is not available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
花花发布了新的文献求助10
1秒前
勤劳青曼发布了新的文献求助10
2秒前
木茄发布了新的文献求助10
2秒前
2秒前
2秒前
默默的皮牙子应助OrangeWang采纳,获得10
3秒前
3秒前
没假期完成签到,获得积分10
3秒前
3秒前
pan完成签到,获得积分10
3秒前
英姑应助土豆条子采纳,获得10
4秒前
4秒前
小徐要上学完成签到,获得积分20
4秒前
imaginehdxy完成签到,获得积分10
5秒前
5秒前
5秒前
昏睡的凡桃应助红衣白雪采纳,获得10
5秒前
5秒前
李爱国应助antirun采纳,获得10
6秒前
上官若男应助莫离采纳,获得10
6秒前
Heraclitus发布了新的文献求助10
6秒前
嘉汐完成签到,获得积分10
6秒前
age关注了科研通微信公众号
6秒前
spring完成签到 ,获得积分10
6秒前
清新的剑心完成签到 ,获得积分10
7秒前
poppy发布了新的文献求助10
7秒前
7秒前
白华苍松发布了新的文献求助20
7秒前
7秒前
十一发布了新的文献求助10
7秒前
Vegetable_Dog发布了新的文献求助10
7秒前
靓丽的羊发布了新的文献求助10
8秒前
Weiyu发布了新的文献求助10
8秒前
优秀店员发布了新的文献求助10
8秒前
zzzz完成签到,获得积分10
8秒前
天天快乐应助CM采纳,获得10
8秒前
sasa完成签到,获得积分10
8秒前
9秒前
璃月品茶钟离完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3581339
求助须知:如何正确求助?哪些是违规求助? 3150936
关于积分的说明 9485535
捐赠科研通 2852778
什么是DOI,文献DOI怎么找? 1568278
邀请新用户注册赠送积分活动 734578
科研通“疑难数据库(出版商)”最低求助积分说明 720703