数学
固定过程
混合(物理)
中心极限定理
度量(数据仓库)
马尔可夫链
极限(数学)
非参数统计
平稳遍历过程
统计物理学
弱收敛
马尔可夫过程
静止点
经验测量
应用数学
过程(计算)
数学分析
计量经济学
统计
遍历理论
不变测度
计算机科学
物理
操作系统
计算机安全
数据库
资产(计算机安全)
量子力学
作者
Nathawut Phandoidaen,Stefan Richter
出处
期刊:Bernoulli
[Bernoulli Society for Mathematical Statistics and Probability]
日期:2022-02-01
卷期号:28 (1)
被引量:1
摘要
We provide a framework for empirical process theory of locally stationary processes using the functional dependence measure. Our results extend known results for stationary Markov chains and mixing sequences by another common possibility to measure dependence and allow for additional time dependence. Our main result is a functional central limit theorem for locally stationary processes. Moreover, maximal inequalities for expectations of sums are developed. We show the applicability of our theory in some examples, for instance, we provide uniform convergence rates for nonparametric regression with locally stationary noise.
科研通智能强力驱动
Strongly Powered by AbleSci AI