Fuzzy ensemble of deep learning models using choquet fuzzy integral, coalition game and information theory for breast cancer histology classification

作者
Pratik Bhowal,Subhankar Sen,Juan D. Velásquez,Ram Sarkar
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:190: 116167-
标识
DOI:10.1016/j.eswa.2021.116167
摘要

Abstract Millions of women, worldwide, suffer from breast cancer and a large number of them succumb to death. In recent years, computer-aided diagnosis (CAD) systems are being developed for the detection of Breast Cancer. A number of fusion techniques have been proposed in this domain, but none of them take into consideration the decisions taken by a subset of classifiers during fusion. Our method, which uses Choquet Integral, considers subsets of classifiers and is thus stronger than the existing methods and beat all of these existing fusion methods in terms of accuracy. This however poses a significant challenge in terms of complexity, since the calculation of the fuzzy measures is a complicated and complex task, which we have dealt with using a novel heuristic method by employing Coalition Game, Information Theory, and by defining a novel mathematical function. In the present work, we have fused VGG16, VGG19, Xception, Inception V3, and InceptionResnet V2 for the classification of breast cancer histology images using a Choquet integral, Coalition game theory, and Information theory. The dataset used for evaluating the proposed model is the ICIAR 2018 Grand Challenge on Breast Cancer Histology (popularly known as BACH) images, which consist of 2-class and 4-class problems. To the best of our knowledge, our experimental results outperform almost all the state-of-the-art methods. For the two-class problem, the best test accuracy among the five deep learning models was achieved by Xception and it was 95% while the Fusion method has a test accuracy of 96%. For the four-class problem, Xception and InceptionResnet V2 have achieved the best test accuracy and both have a test accuracy of 91% while the Fusion method has a test accuracy of 95%. Again, in the case of the two-class problem the best precision and recall by the deep learning models are 0.95 and 0.95 respectively, while the precision and recall for after fusion are 0.96 and 0.96 respectively which is an increase of .01. In the case of the four-class problem, the best precision and recall by the deep learning models are 0.91 and 0.91 respectively, while the precision and recall after fusion are 0.95 and 0.95 respectively which is a very significant increase of .04. The source code for this project can be accessed at https://github.com/subhankar01/fuzzyBACH
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Transient发布了新的文献求助10
1秒前
2秒前
Transient完成签到,获得积分20
8秒前
10秒前
潇洒诗槐发布了新的文献求助10
10秒前
11秒前
Owen应助漂亮的尔烟采纳,获得10
12秒前
执着完成签到,获得积分10
13秒前
徐慕源完成签到,获得积分10
13秒前
14秒前
轻松冰旋应助丁点采纳,获得10
16秒前
16秒前
16秒前
bkagyin应助yanwan采纳,获得10
17秒前
ttang发布了新的文献求助10
17秒前
17秒前
初闻完成签到,获得积分10
18秒前
豆芽发布了新的文献求助10
18秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
21秒前
cococola应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
Orange应助科研通管家采纳,获得30
21秒前
今后应助科研通管家采纳,获得30
21秒前
田様应助科研通管家采纳,获得10
21秒前
21秒前
传奇3应助科研通管家采纳,获得10
22秒前
23秒前
26秒前
慕青应助夏禾采纳,获得10
27秒前
28秒前
ddd发布了新的文献求助20
30秒前
30秒前
桐桐应助zzc采纳,获得10
30秒前
孙帅发布了新的文献求助10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136581
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782406
捐赠科研通 2443643
什么是DOI,文献DOI怎么找? 1299325
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954