Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction

过电位 塔菲尔方程 析氧 材料科学 氢氧化物 催化作用 化学工程 纳米技术 纳米结构 层状双氢氧化物 分解水 化学 冶金 电极 物理化学 电化学 光催化 工程类 生物化学
作者
Zhong‐Yin Zhao,Qi Shao,Jiangyan Xue,Bolong Huang,Zheng Niu,Hongwei Gu,Xiaoqing Huang,Jian‐Ping Lang
出处
期刊:Nano Research [Springer Nature]
卷期号:15 (1): 310-316 被引量:87
标识
DOI:10.1007/s12274-021-3475-z
摘要

Modifying electrocatalysts nanostructures and tuning their electronic properties through defects-oriented synthetic strategies are essential to improve the oxygen evolution reaction (OER) performance of electrocatalysts. Current synthetic strategies about electrocatalysts mainly target the single or double structural defects, while the researches about the synergistic effect of multiple structural defects are rare. In this work, the ultrathin NiFe layered double hydroxide nanosheets with a holey structure, oxygen vacancies and Ni3+ defects on nickel foam (NiFe-LDH-NSs/NF) are prepared by employing a simple and green H2O2-assisted etching method. The synergistic effect of the above three defects leads to the exposure of more active sites and significant improvement of the intrinsic activity. The optimized catalyst exhibits an excellent OER performance with an extraordinarily low overpotential of 170 mV at 10 mA·cm−2 and a small Tafel slope of 39.3 mV·dec−1 in 1 M KOH solution. Density functional theory calculations reveal this OER performance arises from pseudo re-oxidized metal-stable Ni3+ near oxygen vacancies (Ovac), which suppresses 3d-eg of Ni-site and elevates d-band center towards the competitively low electron-transfer barrier. This work provides a new insight to fabricate advanced electrocatalysts for renewable energy conversion technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang发布了新的文献求助10
刚刚
刚刚
顺利的爆米花完成签到 ,获得积分10
1秒前
沉静秋尽完成签到,获得积分10
1秒前
大个应助沉静的颦采纳,获得10
1秒前
657完成签到 ,获得积分10
1秒前
1秒前
执念完成签到 ,获得积分10
2秒前
ECCE713完成签到,获得积分10
2秒前
小刺完成签到,获得积分10
2秒前
sweetbearm应助zxl采纳,获得10
2秒前
优秀的盼夏完成签到,获得积分10
3秒前
传奇3应助沉敛一生采纳,获得10
3秒前
科研通AI5应助咕噜仔采纳,获得50
3秒前
lm完成签到,获得积分20
3秒前
FFF发布了新的文献求助10
4秒前
小二郎应助哈哈采纳,获得10
4秒前
乐乐应助juan采纳,获得10
5秒前
txyouniverse完成签到 ,获得积分10
5秒前
CodeCraft应助纷花雨采纳,获得10
5秒前
小十二完成签到,获得积分10
5秒前
Tianxu Li发布了新的文献求助10
6秒前
月白完成签到,获得积分10
6秒前
淡淡de橙子完成签到,获得积分10
7秒前
含蓄哈密瓜完成签到,获得积分20
7秒前
8秒前
小蘑菇应助白华苍松采纳,获得10
8秒前
董咚咚完成签到,获得积分10
10秒前
洋芋片完成签到 ,获得积分10
10秒前
二尖瓣后叶完成签到,获得积分10
11秒前
zc完成签到,获得积分10
11秒前
酷波er应助dildil采纳,获得10
11秒前
科研通AI5应助科研小民工采纳,获得10
12秒前
觅桃乌龙发布了新的文献求助10
12秒前
张有志完成签到,获得积分10
12秒前
JoyceeZHONG完成签到,获得积分10
12秒前
Shine完成签到 ,获得积分10
12秒前
13秒前
King16发布了新的文献求助10
14秒前
哲000完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759