PET Crystal Efficiency Normalization Using a Stationary Line Source

规范化(社会学) 成像体模 线源 探测器 扫描仪 物理 圆柱 光学 Crystal(编程语言) 材料科学 核医学 计算机科学 数学 几何学 医学 社会学 人类学 程序设计语言
作者
Wenyuan Qi,Y. Qiang,Yang Li,Evren Asma
摘要

1517 Objectives: Accurate crystal efficiency normalization plays an important role in accurate and artifact-free imaging in PET. Axial FOV of PET has been growing over the years for lower patient dose and to study functioning correlations between organs further apart. Crystal efficiency normalization needs to be periodically performed on clinical PET scanners. The current commonly used normalization method relies on a large uniform cylinder phantom. The cylinder phantom is heavy and presents challenges in preparation which becomes particularly difficult for a long axial FOV or large bore scanner. One approach to overcome these difficulties is to use a rotating rod source, effectively mimicking a cylinder source with a line source. Such an approach is still somewhat complicated due to the need for a rotating rod. In this work, we propose a method for crystal efficiency normalization using a stationary line source. In this approach, no phantom movement is required and the use of a simple line source is convenient in terms of preparation and storage. Methods: Using data from a well-centered line source, the overall efficiency of the detectors is decoupled into two parts: 1. The relative efficiencies of detectors transaxially within a ring are determined by the singles counts recorded at each crystal 2. The relative axial efficiencies of detectors in different axial rings are determined by the paired counts recorded at each ring. Assuming there are I axial rings and J crystals in each ring, if the number of singles events at crystal (i,j) are si,j and the number of pairs events are pi,j, the estimated crystal efficiency ηi,jLine for that crystal is given by ηi,jLine=Nsi,jPi/Mi , where si,j is the number of singles events at crystal (i,j), Pi and Mi are the total number of pairs and singles evets from ring i. N is a normalization factor. This expression for ηi,jLine cannot capture the transaxial variances in detection efficiency due to different incidence angles. To overcome this difficulty, the difference between a cylinder source and a line source scan can be evaluated using a Monte Carlo simulation. We first estimate crystal efficiencies ηi,jCylinder_MC from the cylinder simulation dataset using the commonly used Defrise method. We then estimate crystal efficiencies ηi,jLine_MC using the method described above from the simulated line source dataset. We also scan the same line source in the real system to estimate the crystal efficiencies from a real line source, ηi,jLine_real. The final estimated crystal efficiency of the real crystal ηi,j is then given by ηi,j=N ηi,jLine_realηi,jCylinder_MC/ηi,jLine_MC , where N is a normalization factor. To demonstrate the effectiveness of the proposed approach, we compared crystal efficiency maps and phantom reconstructed images from a Canon’s Cartesian TOF PET/CT scanner using the proposed method and compared the results with the Defrise method. Results: By comparing the crystal efficiency maps, it is clear that the proposed method can produce results very similar to those obtained with the Defrise method using a cylinder source: The overall pattern of the crystal maps are very similar and the proposed method also captured the detailed structures in the crystal map. Reconstructions from both methods are also very similar quantitatively and qualitatively. Conclusions: In this work, we proposed a practical method for PET crystal normalization using a stationary line source to make the normalization scan more convenient, especially for long axial FOV scanners. We decoupled the crystal efficiency into two parts using the line source: transaxial relative efficiencies from singles events, and axial relative efficiencies from paired events. In order to capture the transaxial variances, we additionally use Monte Carlo simulations of cylinder and line sources. Experimental results show that the proposed method can produce normalization results very similar to those obtained using a cylinder source and as a result, the resulting reconstructions are also very similar.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
可爱的函函应助提拉米草采纳,获得10
刚刚
欣慰的以蕊完成签到,获得积分10
1秒前
浮游应助baocq采纳,获得10
1秒前
搜集达人应助桀庚采纳,获得10
1秒前
传玉关注了科研通微信公众号
3秒前
大模型应助mark采纳,获得10
3秒前
4秒前
FUsir发布了新的文献求助10
4秒前
4秒前
123456完成签到 ,获得积分20
5秒前
6秒前
深情安青应助司空晓瑶采纳,获得10
6秒前
hugo完成签到,获得积分20
7秒前
SciGPT应助Rookie采纳,获得10
7秒前
枫叶发布了新的文献求助10
7秒前
8秒前
黄春焕发布了新的文献求助10
8秒前
努力努力发布了新的文献求助10
9秒前
迷你的寒梅完成签到 ,获得积分10
9秒前
舍文华发布了新的文献求助10
9秒前
10秒前
上官若男应助baocq采纳,获得10
10秒前
NexusExplorer应助鹿茸采纳,获得10
10秒前
10秒前
kingwill应助胖虎采纳,获得20
11秒前
18746005898完成签到 ,获得积分10
11秒前
11秒前
科研通AI5应助威武大楚采纳,获得10
11秒前
11秒前
yhao发布了新的文献求助10
11秒前
ying完成签到,获得积分10
11秒前
12秒前
绿柚发布了新的文献求助10
12秒前
吴文章完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
小蘑菇应助endlessloop采纳,获得10
13秒前
8R60d8应助可靠的老虎采纳,获得10
13秒前
小马甲应助姗姗_采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4867924
求助须知:如何正确求助?哪些是违规求助? 4159763
关于积分的说明 12899013
捐赠科研通 3913930
什么是DOI,文献DOI怎么找? 2149505
邀请新用户注册赠送积分活动 1168039
关于科研通互助平台的介绍 1070459