Model Predictive Control With Stochastically Approximated Cost-to-Go for Battery Cooling System of Electric Vehicles

模型预测控制 控制器(灌溉) 控制理论(社会学) 最优控制 能源消耗 动态规划 电池(电) 航程(航空) 时间范围 工程类 终端(电信) 计算机科学 控制工程 数学优化 控制(管理) 数学 功率(物理) 生物 电气工程 物理 航空航天工程 人工智能 电信 量子力学 农学
作者
Seho Park,Changsun Ahn
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (5): 4312-4323 被引量:33
标识
DOI:10.1109/tvt.2021.3073126
摘要

The battery thermal management system of an electric vehicle consumes considerable energy when cooling the battery, which can reduce the driving range. To minimize the energy consumption of the battery cooling system, controllers need to be designed as an optimal control problem. A model predictive control can be applied to the optimal controller design, which can be implemented in real-time but at the cost of a small loss of optimality. The performance of a model predictive controller is affected by its cost structure, which is typically composed of the transition cost and the terminal cost. The transition cost is defined by the controller objective, and energy consumption is one example. However, the terminal cost is user defined and it is the main design factor for the controller performance. In model predictive control, the terminal cost is usually formulated to penalize the state variations, which can cause loss of optimality. In this study, the terminal cost is formulated to represent the cost from the end of the prediction horizon to infinity, which is called the cost-to-go. This approach is consistent at the point of an optimal control problem, and the controller with cost-to-go can achieve more optimal performance than one that penalizes state variations. In the proposed model predictive controller, the cost-to-go is approximated by the optimal expected cost that can be calculated using stochastic dynamic programming. The proposed controller reduces the energy consumption significantly in comparison to a typical model predictive controller without increasing the computing load.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
3秒前
HJZ完成签到,获得积分10
3秒前
zhiping发布了新的文献求助10
4秒前
Jasper应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
4311发布了新的文献求助10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
清韵发布了新的文献求助30
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
夏漆应助科研通管家采纳,获得20
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
FR发布了新的文献求助30
6秒前
duanhuiyuan应助科研通管家采纳,获得10
6秒前
6秒前
司空三毒发布了新的文献求助10
7秒前
NIinn完成签到 ,获得积分10
8秒前
上官若男应助iwjlkdjalkjc采纳,获得10
8秒前
随风发布了新的文献求助10
8秒前
yotta应助Veronica Mew采纳,获得10
8秒前
9秒前
CodeCraft应助开放的大侠采纳,获得10
11秒前
12秒前
12秒前
ding应助铅笔羊采纳,获得10
14秒前
称心蓉发布了新的文献求助10
14秒前
ChinaNiu发布了新的文献求助30
14秒前
15秒前
哈哈哈呢完成签到 ,获得积分10
15秒前
蔺丹翠发布了新的文献求助10
15秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Standard Specification for Polyolefin Chopped Strands for Use in Concrete 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416917
求助须知:如何正确求助?哪些是违规求助? 3018733
关于积分的说明 8884958
捐赠科研通 2705950
什么是DOI,文献DOI怎么找? 1483992
科研通“疑难数据库(出版商)”最低求助积分说明 685870
邀请新用户注册赠送积分活动 681074