已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Real-time nondestructive fish behavior detecting in mixed polyculture system using deep-learning and low-cost devices

计算机科学 人工智能 水产养殖 水下 深度学习 噪音(视频) 计算机视觉 机器学习 模式识别(心理学) 多元文化 图像(数学) 渔业 海洋学 生物 地质学
作者
Jun Hu,Dandan Zhao,Yanfeng Zhang,Chengquan Zhou,Wenxuan Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:178: 115051-115051 被引量:64
标识
DOI:10.1016/j.eswa.2021.115051
摘要

Fish behavior has attracted increasing attention in global aquaculture because it provides important information about productivity and fish quality. The use of images to detect fish behavior has shown potential in aquaculture behavioral studies by providing higher spatial resolution, efficiency, and accuracy than conventional approaches such as manual measurement. In addition, it allows for more quantitative data analysis than do other methods. To date, conventional image processing approaches to monitor fish behavior have been based primarily on appearance, morphology, and color information. This approach is complex and/or time-consuming and limits the practicality of such methods in aquaculture. To address these problems, we present herein a noninvasive, rapid, low-cost procedure based on an underwater imaging system and a deep learning framework to detect fish behavior with high accuracy in a mixed polyculture system. The specific objectives of this study are (1) to design a low-cost underwater imaging system that can describe and quantify fish behavior via visual images, and (2) to develop a lightweight deep learning structure to rapidly and accurately detect fish behavior under various conditions. Toward this end, images of fish are first captured via a low-cost imaging system, following which they are preprocessed to reduce noise and enhance data information. Finally, an improved You Only Look Once version 3 Lite (YOLOv3-Lite) network with a novel backbone structure is used to improve the pooling block and loss function and thereby better recognize fish behavior. The proposed method was tested on a real dataset and produced a Precision of 0.897, a Recall of 0.884, an intersection over union of 0.892, and 240 frames per second. Furthermore, when compared with faster region-convolutional neural network, YOLO, YOLOv2, YOLOv3, and single shot multi-Box detector, the performance of each evaluation metric of the proposed method was improved by 10%–20%. This comprehensive analysis indicates that the proposed method provides state-of-the-art performance and may be used in fish farms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滾滾完成签到,获得积分10
刚刚
皮皮完成签到 ,获得积分10
1秒前
1秒前
狂野友梅发布了新的文献求助10
2秒前
王世俊发布了新的文献求助10
2秒前
小马甲应助冷瞳Tong采纳,获得10
2秒前
典雅君浩完成签到,获得积分10
5秒前
5秒前
Taro发布了新的文献求助10
6秒前
6秒前
发发发发布了新的文献求助10
7秒前
7秒前
小王同学完成签到,获得积分10
8秒前
执着的冬瓜完成签到 ,获得积分10
9秒前
李爱国应助馍馍采纳,获得10
11秒前
小新发布了新的文献求助10
11秒前
Azure完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
Dr_Marila发布了新的文献求助10
13秒前
14秒前
科研通AI2S应助发发发采纳,获得10
14秒前
14秒前
16秒前
肉燕发布了新的文献求助10
18秒前
冷瞳Tong发布了新的文献求助10
19秒前
Akim应助Dr_Marila采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
21秒前
研友_VZG7GZ应助jiayu采纳,获得10
21秒前
lll完成签到,获得积分10
21秒前
JamesPei应助王梦雨采纳,获得10
23秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680781
求助须知:如何正确求助?哪些是违规求助? 5001897
关于积分的说明 15174094
捐赠科研通 4840636
什么是DOI,文献DOI怎么找? 2594249
邀请新用户注册赠送积分活动 1547310
关于科研通互助平台的介绍 1505282