Real-time nondestructive fish behavior detecting in mixed polyculture system using deep-learning and low-cost devices

计算机科学 人工智能 水产养殖 水下 深度学习 噪音(视频) 计算机视觉 机器学习 模式识别(心理学) 多元文化 图像(数学) 渔业 生物 海洋学 地质学
作者
Jun Hu,Dandan Zhao,Yanfeng Zhang,Chengquan Zhou,Wenxuan Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:178: 115051-115051 被引量:64
标识
DOI:10.1016/j.eswa.2021.115051
摘要

Fish behavior has attracted increasing attention in global aquaculture because it provides important information about productivity and fish quality. The use of images to detect fish behavior has shown potential in aquaculture behavioral studies by providing higher spatial resolution, efficiency, and accuracy than conventional approaches such as manual measurement. In addition, it allows for more quantitative data analysis than do other methods. To date, conventional image processing approaches to monitor fish behavior have been based primarily on appearance, morphology, and color information. This approach is complex and/or time-consuming and limits the practicality of such methods in aquaculture. To address these problems, we present herein a noninvasive, rapid, low-cost procedure based on an underwater imaging system and a deep learning framework to detect fish behavior with high accuracy in a mixed polyculture system. The specific objectives of this study are (1) to design a low-cost underwater imaging system that can describe and quantify fish behavior via visual images, and (2) to develop a lightweight deep learning structure to rapidly and accurately detect fish behavior under various conditions. Toward this end, images of fish are first captured via a low-cost imaging system, following which they are preprocessed to reduce noise and enhance data information. Finally, an improved You Only Look Once version 3 Lite (YOLOv3-Lite) network with a novel backbone structure is used to improve the pooling block and loss function and thereby better recognize fish behavior. The proposed method was tested on a real dataset and produced a Precision of 0.897, a Recall of 0.884, an intersection over union of 0.892, and 240 frames per second. Furthermore, when compared with faster region-convolutional neural network, YOLO, YOLOv2, YOLOv3, and single shot multi-Box detector, the performance of each evaluation metric of the proposed method was improved by 10%–20%. This comprehensive analysis indicates that the proposed method provides state-of-the-art performance and may be used in fish farms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
乐乐应助蜉蝣采纳,获得10
6秒前
ximei完成签到,获得积分10
6秒前
不是省油的灯完成签到,获得积分10
6秒前
IP190237完成签到,获得积分10
8秒前
兜兜窦完成签到,获得积分10
9秒前
迪娜发布了新的文献求助10
10秒前
dreamers完成签到,获得积分10
13秒前
18秒前
勤恳翠芙完成签到,获得积分20
20秒前
zzz33完成签到 ,获得积分10
20秒前
20秒前
manzte完成签到,获得积分10
21秒前
热心芙发布了新的文献求助30
23秒前
神华完成签到 ,获得积分10
26秒前
manzte发布了新的文献求助10
27秒前
打工福仔完成签到 ,获得积分10
29秒前
yang完成签到,获得积分10
30秒前
30秒前
30秒前
31秒前
syt完成签到 ,获得积分10
33秒前
ddd发布了新的文献求助10
34秒前
负责的流沙完成签到 ,获得积分10
35秒前
1231发布了新的文献求助10
35秒前
36秒前
wasiwan完成签到,获得积分10
37秒前
40秒前
45秒前
健壮的花瓣完成签到 ,获得积分10
46秒前
傻傻的香菱完成签到,获得积分10
48秒前
48秒前
dllneu发布了新的文献求助50
49秒前
源源源完成签到 ,获得积分10
49秒前
51秒前
万能图书馆应助我爱科研采纳,获得10
52秒前
53秒前
我亦化身东海去完成签到 ,获得积分10
54秒前
54秒前
GLY完成签到,获得积分20
55秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3389529
求助须知:如何正确求助?哪些是违规求助? 3001541
关于积分的说明 8798876
捐赠科研通 2688245
什么是DOI,文献DOI怎么找? 1472461
科研通“疑难数据库(出版商)”最低求助积分说明 680947
邀请新用户注册赠送积分活动 673557