光催化
材料科学
分解水
化学工程
异质结
蛭石
纳米晶材料
催化作用
制氢
漫反射红外傅里叶变换
氢
光化学
纳米技术
化学
复合材料
光电子学
有机化学
工程类
作者
Martin Reli,Nela Ambrožová,Marta Valášková,Miroslava Edelmannová,Libor Čapek,Christian Schimpf,Mykhaylo Motylenko,David Rafaja,Kamila Kočí
标识
DOI:10.1016/j.enconman.2021.114156
摘要
The study is focused on the photocatalytic ability of nanocrystalline oxides Fe2O3 and CeO2 (marked as Fe and Ce) and their 8:2, 5:5 and 2:8 M ratio mixtures (marked as Fe8Ce2, Fe5Ce5 and Fe2Ce8) for the hydrogen production via water splitting. The photocatalysts were prepared using a precipitation procedure both in a "stand-alone" powder form and in form of the Fe2O3/CeO2 nanoparticles precipitated on vermiculite (Ver). The phase composition and the specific surface area of the samples, the size and morphology of nanocrystallites of individual phases, and the optical and electronic properties of the photocatalysts were characterized in detail by X-ray powder diffraction, nitrogen physisorption, transmission electron microscopy, diffuse reflectance UV–Vis spectroscopy and work function measurements. Photocatalytic water splitting over the photocatalysts was performed during 8 h in annular batch photoreactor illuminated with 8 W Hg lamp (λ = 254 nm). The most active photocatalysts were Fe8Ce2 both in "stand-alone" powder form and in form of the photocatalyst attached on vermiculite. The photocatalytic generation of hydrogen in the presence of the Fe2O3/CeO2 photocatalysts is controlled by the intrinsic photocatalytic properties of the oxides and by the specific surface of the composite. It is enhanced, when heterojunctions between Fe2O3 and CeO2 form. The work function measurements confirmed the formation of heterojunction Type I with bent bands, which effectively inhibits the recombination of photogenerated charge carriers. In addition, it was confirmed that the anchoring of the photocatalyst on vermiculite does not significantly degrade the photocatalytic activity of the composite. In contrast, even if the amount of the photocatalytically active component was three-times smaller as compared with the photocatalysts without vermiculite, just a slight decrease of the photocatalytic activity was observed.
科研通智能强力驱动
Strongly Powered by AbleSci AI