Characterization and comparison of properties of cryogenic conditioned CNT reinforced thermoset (epoxy) and thermoplastic (poly vinyl alcohol) composite yarns
Carbon nanotube (CNT) fiber/yarn reinforced composites are considered as a new generation of advanced materials for applications in aerospace and space industry. In this study, two types of CNT composite yarns were produced by twisting CNT films and infiltrating with thermoset epoxy (EP) and thermoplastic poly vinyl alcohol (PVA) resins. The tensile strength of CNT/PVA and CNT/EP composite yarn was 409.91 MPa and 206.87 MPa, much higher than that of pure CNT yarn (129.94 MPa). After mono-cryogenic condition, the mechanical and electrical properties of CNT/EP and CNT/PVA composite yarns were both enhanced due to the structure reorder of the CNT bundles and improvement of interfacial bonding. However, after 60 times cyclic-cryogenic conditions, CNT/EP composite yarn showed a ∼10% degradation of tensile strength; while CNT/PVA composite yarn exhibited 6% increment. This study provides fundamental data of the CNT reinforced thermoset and thermoplastic composite yarns for their practical applications in cryogenic environment.