催化作用
化学物理
电催化剂
材料科学
铂金
氢
吸附
原子单位
纳米技术
星团(航天器)
化学工程
化学
物理化学
物理
电化学
电极
有机化学
工程类
计算机科学
程序设计语言
量子力学
生物化学
作者
Xinzhe Li,Yiyun Fang,Jun Wang,Hanyan Fang,Shibo Xi,Xiaoxu Zhao,Danyun Xu,Haomin Xu,Wei Yu,Xiao Hai,Cheng Chen,Chuanhao Yao,Hua Bing Tao,Alexander G. R. Howe,Stephen J. Pennycook,Bin Liu,Jiong Lu,Chenliang Su
标识
DOI:10.1038/s41467-021-22681-4
摘要
Abstract Exposing and stabilizing undercoordinated platinum (Pt) sites and therefore optimizing their adsorption to reactive intermediates offers a desirable strategy to develop highly efficient Pt-based electrocatalysts. However, preparation of atomically controllable Pt-based model catalysts to understand the correlation between electronic structure, adsorption energy, and catalytic properties of atomic Pt sites is still challenging. Herein we report the atomically thin two-dimensional PtTe 2 nanosheets with well-dispersed single atomic Te vacancies (Te-SAVs) and atomically well-defined undercoordinated Pt sites as a model electrocatalyst. A controlled thermal treatment drives the migration of the Te-SAVs to form thermodynamically stabilized, ordered Te-SAV clusters, which decreases both the density of states of undercoordinated Pt sites around the Fermi level and the interacting orbital volume of Pt sites. As a result, the binding strength of atomically defined Pt active sites to H intermediates is effectively reduced, which renders PtTe 2 nanosheets highly active and stable in hydrogen evolution reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI