Online Pricing and Trading of Private Data in Correlated Queries

差别隐私 计算机科学 后悔 利用 推荐系统 数据挖掘 计算机安全 情报检索 机器学习
作者
Hongbin Cai,Fan Ye,Yuanyuan Yang,Yanmin Zhu,Jie Li,Fu Xiao
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (3): 569-585 被引量:8
标识
DOI:10.1109/tpds.2021.3095238
摘要

With the commoditization of private data, data trading in consideration of user privacy protection has become a fascinating research topic. The trading for private web browsing histories brings huge economic value to data consumers when leveraged by targeted advertising. And the online pricing of these private data further helps achieve more realistic data trading. In this paper, we study the trading and pricing of multiple correlated queries on private web browsing history data at the same time. We propose CTRADE, which is a novel online data CommodiTization fRamework for trAding multiple correlateD queriEs over private data. CTRADE first devises a modified matrix mechanism to perturb query answers. It especially quantifies privacy loss under the relaxation of classical differential privacy and a newly devised mechanism with relaxed matrix sensitivity, and further compensates data owners for their diverse privacy losses in a satisfying manner. CTRADE then proposes an ellipsoid-based query pricing mechanism according to a given linear market value model, which exploits the features of the ellipsoid to explore and exploit the close-optimal dynamic price at each round. In particular, the proposed mechanism produces a low cumulative regret, which is quadratic in the dimension of the feature vector and logarithmic in the number of total rounds. Through real-data based experiments, our analysis and evaluation results demonstrate that CTRADE balances total error and privacy preferences well within acceptable running time, indeed produces a convergent cumulative regret with more rounds, and also achieves all desired economic properties of budget balance, individual rationality, and truthfulness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助善良青筠采纳,获得10
刚刚
John完成签到,获得积分10
2秒前
杨扬完成签到,获得积分10
3秒前
Joy完成签到,获得积分10
3秒前
4秒前
cmc完成签到,获得积分10
5秒前
Jenny发布了新的文献求助10
5秒前
无限的山水完成签到 ,获得积分10
6秒前
科目三应助111采纳,获得10
6秒前
共享精神应助卷卷采纳,获得10
7秒前
斯文败类应助任梓宁采纳,获得10
7秒前
8秒前
未来可期完成签到,获得积分10
8秒前
Nostalgia完成签到,获得积分10
9秒前
10秒前
炸炸西柚发布了新的文献求助10
11秒前
罐罐儿完成签到,获得积分0
11秒前
念兹在兹完成签到,获得积分10
12秒前
13秒前
呼呼哈哈完成签到,获得积分10
16秒前
合适醉蝶完成签到 ,获得积分10
18秒前
18秒前
18秒前
甜蜜的代容完成签到,获得积分20
18秒前
Carol完成签到,获得积分10
20秒前
浅笑暖暖完成签到,获得积分10
20秒前
Hwen完成签到,获得积分10
20秒前
echo完成签到,获得积分10
21秒前
21秒前
彤航完成签到,获得积分10
22秒前
笨笨平松发布了新的文献求助10
22秒前
24秒前
任梓宁发布了新的文献求助10
25秒前
xbbccc完成签到,获得积分20
25秒前
AAAstf完成签到 ,获得积分10
27秒前
举个栗子完成签到,获得积分10
27秒前
28秒前
yyz发布了新的文献求助10
30秒前
30秒前
开朗娩完成签到 ,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137155
求助须知:如何正确求助?哪些是违规求助? 2788182
关于积分的说明 7784837
捐赠科研通 2444146
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011