清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Imbalanced data enhancement method based on improved DCGAN and its application

鉴别器 人工智能 计算机科学 模式识别(心理学) 过度拟合 理论(学习稳定性) 卷积(计算机科学) 卷积神经网络 规范化(社会学) 样品(材料) 人工神经网络 数学 机器学习 电信 探测器 社会学 色谱法 化学 人类学
作者
Lijun Zhang,Lixiang Duan,Xiaocui Hong,Xiangyu Liu,Xinyun Zhang
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:41 (2): 3485-3498 被引量:9
标识
DOI:10.3233/jifs-210843
摘要

Machinery operates well under normal conditions in most cases; far fewer samples are collected in a fault state (minority samples) than in a normal state, resulting in an imbalance of samples. Common machine learning algorithms such as deep neural networks require a significant amount of data during training to avoid overfitting. These models often fail to detect minority samples when the input samples are imbalanced, which results in missed diagnoses of equipment faults. As an effective method to enhance minority samples, Deep Convolution Generative Adversarial Network (DCGAN) does not fundamentally address the problem of unstable Generative Adversarial Network (GAN) training. This study proposes an improved DCGAN model with improved stability and sample balance for achieving greater classification accuracy over minority samples. First, spectral normalization is performed on each convolutional layer, improving stability in the DCGAN discriminator. Then, the improved DCGAN model is trained to generate new samples that are different from the original samples but with a similar distribution when the Nash equilibrium is reached. Four indices—Inception Score (IS), Fréchet Inception Distance Score (FID), Peak Signal to Noise Ratio (PSNR), and Structural Similarity (SSIM)—were used to quantitatively evaluate of the generated images. Finally, the Balance Degree of Samples (BDS) index was proposed, and the new samples are proportionally added to the original samples to improve sample balance, resulting in the formation of several groups of datasets with different balance degrees, and Convolutional Neural Network (CNN) models are used to classify these samples. With experimental analysis on the reciprocating compressor, the variance of lost data is found to be less than 1% of the original value, representing an increase in stabilityof the model to generate diverse and high-quality sample images, as compared with that of the unmodified model. The classification accuracy exceeds 95% and tends to remain stable when the balance degree of samples is greater than 80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
77发布了新的文献求助10
11秒前
39秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
1分钟前
1分钟前
科研搬运工完成签到,获得积分10
1分钟前
假萌完成签到,获得积分10
1分钟前
丘比特应助77采纳,获得10
1分钟前
2分钟前
铁妹儿完成签到 ,获得积分10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
4分钟前
77发布了新的文献求助10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
YepbingCHOI发布了新的文献求助10
5分钟前
Derek完成签到,获得积分0
6分钟前
房天川完成签到 ,获得积分10
6分钟前
竹桃完成签到 ,获得积分10
6分钟前
刘刘完成签到 ,获得积分10
6分钟前
77发布了新的文献求助10
6分钟前
李爱国应助英勇的阑悦采纳,获得10
6分钟前
6分钟前
归尘应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
7分钟前
科研12345完成签到 ,获得积分10
8分钟前
归尘应助科研通管家采纳,获得10
8分钟前
斯文败类应助科研通管家采纳,获得10
8分钟前
8分钟前
77发布了新的文献求助10
9分钟前
9分钟前
田田完成签到 ,获得积分10
9分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307460
求助须知:如何正确求助?哪些是违规求助? 2941053
关于积分的说明 8500336
捐赠科研通 2615463
什么是DOI,文献DOI怎么找? 1428912
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648494