亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Visual and Intelligent Identification Methods for Defects in Underwater Structure Using Alternating Current Field Measurement Technique

卷积神经网络 水下 人工智能 计算机科学 算法 预处理器 人工神经网络 领域(数学) 计算机视觉 深度学习 模式识别(心理学) 地质学 数学 海洋学 纯数学
作者
Xin’an Yuan,Wei Li,Guoming Chen,Xiaokang Yin,Xiao Li,Jie Liu,Jianchao Zhao,Jianming Zhao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (6): 3853-3862 被引量:38
标识
DOI:10.1109/tii.2021.3117034
摘要

As the ocean engineering structure serves in the critical underwater environment, a variety of defects, such as cracks and corrosions, always cause damage to the structure. It is still a key challenge to identify and evaluate these defects accurately in the underwater environment. In this article, the visual and intelligent identification methods are presented for the inspection of defects in underwater structures using the alternating current field measurement (ACFM) technique. The current perturbation theory is developed to analyze the disturbed current field and the distorted magnetic field caused by defects. The gradient imaging algorithm is presented as an image preprocessing method to highlight the visual morphology of defects. The underwater intelligent ACFM system is set up. The experiments are carried out to verify the gradient imaging algorithm. The convolutional neural network (CNN) deep learning algorithm is presented to identify the grey-scale map samples preprocessed by the gradient imaging algorithm. The results show that the current perturbation theory clarifies the relationship between the characteristic signal and the morphology of various defects. The Bz image reflects the surface morphology of defects. The gradient imaging algorithm can achieve visual detection of defects. The single crack, the irregular crack, and the corrosion can be identified intelligently by the CNN deep learning algorithm. These defects can be evaluated accurately after classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KINGAZX完成签到 ,获得积分10
17秒前
诸葛平卉完成签到 ,获得积分10
25秒前
蓝朱发布了新的文献求助10
37秒前
43秒前
yf完成签到,获得积分10
44秒前
49秒前
55秒前
蓝朱完成签到,获得积分10
57秒前
1分钟前
1分钟前
1分钟前
Able完成签到,获得积分10
1分钟前
传奇3应助噢斯帕斯基采纳,获得10
1分钟前
zbr完成签到 ,获得积分10
1分钟前
pia叽完成签到 ,获得积分10
2分钟前
balko完成签到,获得积分10
2分钟前
2分钟前
ersheng发布了新的文献求助10
2分钟前
Criminology34应助坦率广山采纳,获得10
2分钟前
所所应助啦啦啦采纳,获得10
2分钟前
万能图书馆应助啦啦啦采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
ling发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
iNk应助mlx采纳,获得30
3分钟前
噢斯帕斯基关注了科研通微信公众号
3分钟前
3分钟前
充电宝应助ling采纳,获得10
3分钟前
啦啦啦发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
NattyPoe发布了新的文献求助10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639713
求助须知:如何正确求助?哪些是违规求助? 4749883
关于积分的说明 15007176
捐赠科研通 4797859
什么是DOI,文献DOI怎么找? 2563980
邀请新用户注册赠送积分活动 1522864
关于科研通互助平台的介绍 1482529