Visual and Intelligent Identification Methods for Defects in Underwater Structure Using Alternating Current Field Measurement Technique

卷积神经网络 水下 人工智能 计算机科学 算法 预处理器 人工神经网络 领域(数学) 计算机视觉 深度学习 模式识别(心理学) 地质学 数学 海洋学 纯数学
作者
Xin’an Yuan,Wei Li,Guoming Chen,Xiaokang Yin,Xiao Li,Jie Liu,Jianchao Zhao,Jianming Zhao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (6): 3853-3862 被引量:38
标识
DOI:10.1109/tii.2021.3117034
摘要

As the ocean engineering structure serves in the critical underwater environment, a variety of defects, such as cracks and corrosions, always cause damage to the structure. It is still a key challenge to identify and evaluate these defects accurately in the underwater environment. In this article, the visual and intelligent identification methods are presented for the inspection of defects in underwater structures using the alternating current field measurement (ACFM) technique. The current perturbation theory is developed to analyze the disturbed current field and the distorted magnetic field caused by defects. The gradient imaging algorithm is presented as an image preprocessing method to highlight the visual morphology of defects. The underwater intelligent ACFM system is set up. The experiments are carried out to verify the gradient imaging algorithm. The convolutional neural network (CNN) deep learning algorithm is presented to identify the grey-scale map samples preprocessed by the gradient imaging algorithm. The results show that the current perturbation theory clarifies the relationship between the characteristic signal and the morphology of various defects. The Bz image reflects the surface morphology of defects. The gradient imaging algorithm can achieve visual detection of defects. The single crack, the irregular crack, and the corrosion can be identified intelligently by the CNN deep learning algorithm. These defects can be evaluated accurately after classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kk完成签到,获得积分10
刚刚
wx发布了新的文献求助10
刚刚
1秒前
SciGPT应助will采纳,获得10
2秒前
chenzq发布了新的文献求助10
2秒前
小李同学完成签到,获得积分10
2秒前
H-C应助映城采纳,获得50
2秒前
烟花应助默默的不二采纳,获得10
2秒前
2秒前
3秒前
3秒前
Elanie.zh发布了新的文献求助10
4秒前
任性初夏发布了新的文献求助10
4秒前
YUan完成签到,获得积分10
4秒前
顺利的映天完成签到,获得积分10
4秒前
5秒前
科研通AI6应助ycy采纳,获得10
5秒前
Ava应助红油曲奇采纳,获得10
5秒前
5秒前
5秒前
汉堡包应助周凡淇采纳,获得30
5秒前
酷波er应助周凡淇采纳,获得10
5秒前
科研通AI6应助周凡淇采纳,获得10
5秒前
科研通AI6应助周凡淇采纳,获得10
5秒前
喔喔佳佳完成签到 ,获得积分10
6秒前
wx完成签到,获得积分10
6秒前
和谐的晓凡完成签到,获得积分10
6秒前
科研通AI6应助zhuh采纳,获得10
7秒前
小孟完成签到,获得积分10
8秒前
小何发布了新的文献求助10
8秒前
zxc发布了新的文献求助10
9秒前
庚123完成签到,获得积分10
9秒前
xu完成签到 ,获得积分10
9秒前
9秒前
科研通AI2S应助忧虑的安青采纳,获得20
10秒前
10秒前
輕瘋发布了新的文献求助10
11秒前
NexusExplorer应助Water采纳,获得30
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407