Visual and Intelligent Identification Methods for Defects in Underwater Structure Using Alternating Current Field Measurement Technique

卷积神经网络 水下 人工智能 计算机科学 算法 预处理器 人工神经网络 领域(数学) 计算机视觉 深度学习 模式识别(心理学) 地质学 数学 海洋学 纯数学
作者
Xin’an Yuan,Wei Li,Guoming Chen,Xiaokang Yin,Xiao Li,Jie Liu,Jianchao Zhao,Jianming Zhao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (6): 3853-3862 被引量:38
标识
DOI:10.1109/tii.2021.3117034
摘要

As the ocean engineering structure serves in the critical underwater environment, a variety of defects, such as cracks and corrosions, always cause damage to the structure. It is still a key challenge to identify and evaluate these defects accurately in the underwater environment. In this article, the visual and intelligent identification methods are presented for the inspection of defects in underwater structures using the alternating current field measurement (ACFM) technique. The current perturbation theory is developed to analyze the disturbed current field and the distorted magnetic field caused by defects. The gradient imaging algorithm is presented as an image preprocessing method to highlight the visual morphology of defects. The underwater intelligent ACFM system is set up. The experiments are carried out to verify the gradient imaging algorithm. The convolutional neural network (CNN) deep learning algorithm is presented to identify the grey-scale map samples preprocessed by the gradient imaging algorithm. The results show that the current perturbation theory clarifies the relationship between the characteristic signal and the morphology of various defects. The Bz image reflects the surface morphology of defects. The gradient imaging algorithm can achieve visual detection of defects. The single crack, the irregular crack, and the corrosion can be identified intelligently by the CNN deep learning algorithm. These defects can be evaluated accurately after classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忐忑的烤鸡完成签到,获得积分10
1秒前
无语的冬易完成签到,获得积分10
1秒前
赘婿应助wang1343259150采纳,获得10
1秒前
彭于晏应助大宝采纳,获得10
2秒前
sss完成签到,获得积分10
2秒前
悦耳的柠檬完成签到,获得积分10
3秒前
王杏利完成签到,获得积分10
4秒前
4秒前
领导范儿应助坚强幼晴采纳,获得10
5秒前
SAINT完成签到,获得积分10
8秒前
Hiyori完成签到,获得积分10
8秒前
qingqing168完成签到,获得积分10
9秒前
9秒前
Zj发布了新的文献求助100
10秒前
lx完成签到 ,获得积分20
11秒前
huyuan发布了新的文献求助30
11秒前
11秒前
顾矜应助ohh采纳,获得10
11秒前
12秒前
myco完成签到,获得积分10
12秒前
pcr163应助zjc1111采纳,获得50
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
hailan完成签到,获得积分20
14秒前
鬼笔环肽发布了新的文献求助10
15秒前
熊遇蜜发布了新的文献求助10
15秒前
段dwh发布了新的文献求助10
15秒前
15秒前
坚强幼晴发布了新的文献求助10
16秒前
16秒前
16秒前
时间有泪1212完成签到 ,获得积分10
17秒前
小蜻蜓应助沉静的愫采纳,获得10
18秒前
可靠半青完成签到 ,获得积分10
19秒前
hailan发布了新的文献求助10
21秒前
21秒前
小羊完成签到,获得积分10
21秒前
23秒前
旎旎完成签到,获得积分10
24秒前
段dwh完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958282
求助须知:如何正确求助?哪些是违规求助? 3504444
关于积分的说明 11118494
捐赠科研通 3235770
什么是DOI,文献DOI怎么找? 1788433
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582