Visual and Intelligent Identification Methods for Defects in Underwater Structure Using Alternating Current Field Measurement Technique

卷积神经网络 水下 人工智能 计算机科学 算法 预处理器 人工神经网络 领域(数学) 计算机视觉 深度学习 模式识别(心理学) 地质学 数学 海洋学 纯数学
作者
Xin’an Yuan,Wei Li,Guoming Chen,Xiaokang Yin,Xiao Li,Jie Liu,Jianchao Zhao,Jianming Zhao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (6): 3853-3862 被引量:38
标识
DOI:10.1109/tii.2021.3117034
摘要

As the ocean engineering structure serves in the critical underwater environment, a variety of defects, such as cracks and corrosions, always cause damage to the structure. It is still a key challenge to identify and evaluate these defects accurately in the underwater environment. In this article, the visual and intelligent identification methods are presented for the inspection of defects in underwater structures using the alternating current field measurement (ACFM) technique. The current perturbation theory is developed to analyze the disturbed current field and the distorted magnetic field caused by defects. The gradient imaging algorithm is presented as an image preprocessing method to highlight the visual morphology of defects. The underwater intelligent ACFM system is set up. The experiments are carried out to verify the gradient imaging algorithm. The convolutional neural network (CNN) deep learning algorithm is presented to identify the grey-scale map samples preprocessed by the gradient imaging algorithm. The results show that the current perturbation theory clarifies the relationship between the characteristic signal and the morphology of various defects. The Bz image reflects the surface morphology of defects. The gradient imaging algorithm can achieve visual detection of defects. The single crack, the irregular crack, and the corrosion can be identified intelligently by the CNN deep learning algorithm. These defects can be evaluated accurately after classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助咚咚采纳,获得10
1秒前
ruru发布了新的文献求助10
1秒前
2秒前
ontheway发布了新的文献求助10
2秒前
yo完成签到 ,获得积分10
3秒前
顾末完成签到,获得积分10
5秒前
Alice0210完成签到,获得积分10
7秒前
852应助666采纳,获得10
7秒前
jingsihan发布了新的文献求助10
8秒前
nick完成签到,获得积分10
8秒前
薛武发布了新的文献求助10
8秒前
aafrr完成签到 ,获得积分10
9秒前
yun关闭了yun文献求助
9秒前
芊瑶完成签到,获得积分10
9秒前
顾矜应助Iaint采纳,获得30
10秒前
12秒前
大模型应助熙慕采纳,获得10
12秒前
geopotter完成签到 ,获得积分10
12秒前
12秒前
coolcy完成签到,获得积分10
13秒前
13秒前
乐乐应助stk采纳,获得10
14秒前
情怀应助0_08采纳,获得10
14秒前
隐形曼青应助薛武采纳,获得10
15秒前
所所应助薛武采纳,获得10
15秒前
CodeCraft应助ontheway采纳,获得10
15秒前
华仔应助ontheway采纳,获得10
15秒前
16秒前
xwc发布了新的文献求助10
16秒前
千辞完成签到 ,获得积分10
18秒前
共享精神应助Lucy采纳,获得10
18秒前
18秒前
18秒前
19秒前
猛虎发布了新的文献求助10
19秒前
无欲无求发布了新的文献求助30
19秒前
20秒前
21秒前
无花果应助研友_ZbMNPn采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643824
求助须知:如何正确求助?哪些是违规求助? 4762069
关于积分的说明 15022410
捐赠科研通 4802071
什么是DOI,文献DOI怎么找? 2567294
邀请新用户注册赠送积分活动 1524947
关于科研通互助平台的介绍 1484470