Symbolic Transformer Accelerating Machine Learning Screening of Hydrogen and Deuterium Evolution Reaction Catalysts in MA2Z4 Materials

密度泛函理论 材料科学 催化作用 吉布斯自由能 机器学习 物理化学 热力学 计算化学 计算机科学 原子物理学 量子力学 物理 化学 生物化学
作者
Jingnan Zheng,Xiang Sun,Jiaxi Hu,Shibin Wang,Zihao Yao,Shengwei Deng,Xiang Pan,Zhiyan Pan,Jianguo Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (43): 50878-50891 被引量:43
标识
DOI:10.1021/acsami.1c13236
摘要

Two-dimensional (2D) materials have been developed into various catalysts with high performance, but employing them for developing highly stable and active nonprecious hydrogen evolution reaction (HER) catalysts still encounters many challenges. To this end, the machine learning (ML) screening of HER catalysts is accelerated by using genetic programming (GP) of symbolic transformers for various typical 2D MA2Z4 materials. The values of the Gibbs free energy of hydrogen adsorption (ΔGH*) are accurately and rapidly predicted via extreme gradient boosting regression by using only simple GP-processed elemental features, with a low predictive root-mean-square error of 0.14 eV. With the analysis of ML and density functional theory (DFT) methods, it is found that various electronic structural properties of metal atoms and the p-band center of surface atoms play a crucial role in regulating the HER performance. Based on these findings, NbSi2N4 and VSi2N4 are discovered to be active catalysts with thermodynamical and dynamical stability as ΔGH* approaches to zero (-0.041 and 0.024 eV). In addition, DFT calculations reveal that these catalysts also exhibit good deuterium evolution reaction (DER) performance. Overall, a multistep workflow is developed through ML models combined with DFT calculations for efficiently screening the potential HER and DER catalysts from 2D materials with the same crystal prototype, which is believed to have significant contribution to catalyst design and fabrication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百事从欢发布了新的文献求助10
1秒前
欢呼妙菱发布了新的文献求助10
1秒前
2秒前
wang完成签到,获得积分10
2秒前
书虫完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
想吃烤鸭发布了新的文献求助10
3秒前
CAOHOU应助沉默冬卉采纳,获得10
3秒前
SciGPT应助xymy采纳,获得10
3秒前
lii应助水牛采纳,获得10
4秒前
小马发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
俏皮小松鼠给俏皮小松鼠的求助进行了留言
6秒前
7秒前
小曾应助流白采纳,获得10
8秒前
8秒前
甜美怜蕾完成签到 ,获得积分10
8秒前
吉恩完成签到,获得积分20
9秒前
我劝告了风完成签到,获得积分10
10秒前
10秒前
yuzi完成签到,获得积分10
10秒前
tanrui完成签到,获得积分10
10秒前
郎梟发布了新的文献求助10
10秒前
YZ完成签到,获得积分10
11秒前
11秒前
RadiantYT发布了新的文献求助10
11秒前
cellulose完成签到,获得积分10
12秒前
小曾应助流白采纳,获得10
12秒前
丘比特应助A2QD采纳,获得10
12秒前
12秒前
xiaoshi完成签到,获得积分10
12秒前
up发布了新的文献求助10
13秒前
13秒前
问雁完成签到,获得积分10
14秒前
wh完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650