Symbolic Transformer Accelerating Machine Learning Screening of Hydrogen and Deuterium Evolution Reaction Catalysts in MA2Z4 Materials

密度泛函理论 材料科学 催化作用 化学物理 计算化学 原子物理学 量子力学 物理 化学 生物化学
作者
Jingnan Zheng,Xiang Sun,Jiaxi Hu,Shibin Wang,Zihao Yao,Shengwei Deng,Xiang Pan,Zhiyan Pan,Jianguo Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (43): 50878-50891 被引量:37
标识
DOI:10.1021/acsami.1c13236
摘要

Two-dimensional (2D) materials have been developed into various catalysts with high performance, but employing them for developing highly stable and active nonprecious hydrogen evolution reaction (HER) catalysts still encounters many challenges. To this end, the machine learning (ML) screening of HER catalysts is accelerated by using genetic programming (GP) of symbolic transformers for various typical 2D MA2Z4 materials. The values of the Gibbs free energy of hydrogen adsorption (ΔGH*) are accurately and rapidly predicted via extreme gradient boosting regression by using only simple GP-processed elemental features, with a low predictive root-mean-square error of 0.14 eV. With the analysis of ML and density functional theory (DFT) methods, it is found that various electronic structural properties of metal atoms and the p-band center of surface atoms play a crucial role in regulating the HER performance. Based on these findings, NbSi2N4 and VSi2N4 are discovered to be active catalysts with thermodynamical and dynamical stability as ΔGH* approaches to zero (-0.041 and 0.024 eV). In addition, DFT calculations reveal that these catalysts also exhibit good deuterium evolution reaction (DER) performance. Overall, a multistep workflow is developed through ML models combined with DFT calculations for efficiently screening the potential HER and DER catalysts from 2D materials with the same crystal prototype, which is believed to have significant contribution to catalyst design and fabrication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜完成签到,获得积分10
刚刚
霸气的草莓完成签到,获得积分10
刚刚
Dou发布了新的文献求助30
1秒前
天天快乐应助RATHER采纳,获得10
1秒前
自然采蓝完成签到,获得积分10
2秒前
斯文败类应助QZF采纳,获得10
2秒前
快乐滑板应助勤劳滑板采纳,获得10
3秒前
4秒前
5秒前
胖大星发布了新的文献求助10
5秒前
Grin完成签到,获得积分10
6秒前
琥珀川完成签到,获得积分10
6秒前
酷波er应助LX采纳,获得10
8秒前
优秀凡波完成签到,获得积分10
8秒前
10秒前
easymoney发布了新的文献求助10
10秒前
兔斯基发布了新的文献求助10
10秒前
12秒前
12秒前
hihi发布了新的文献求助10
13秒前
yyq617569158发布了新的文献求助10
14秒前
youxiaotong完成签到,获得积分10
14秒前
YLJGJZ发布了新的文献求助10
16秒前
小萝莉发布了新的文献求助10
18秒前
linmu完成签到 ,获得积分10
19秒前
Renee应助苹果饼干采纳,获得10
20秒前
充电宝应助mjn404采纳,获得10
21秒前
22秒前
beibeimao发布了新的文献求助10
24秒前
Mere完成签到,获得积分10
25秒前
YLJGJZ完成签到,获得积分10
25秒前
慕青应助camsLX采纳,获得10
25秒前
香蕉觅云应助bqin采纳,获得10
26秒前
27秒前
27秒前
FashionBoy应助菜菜采纳,获得10
28秒前
LSSW发布了新的文献求助80
28秒前
29秒前
顾矜应助危机的渊思采纳,获得10
29秒前
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160823
求助须知:如何正确求助?哪些是违规求助? 2812005
关于积分的说明 7894119
捐赠科研通 2470886
什么是DOI,文献DOI怎么找? 1315786
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053