Symbolic Transformer Accelerating Machine Learning Screening of Hydrogen and Deuterium Evolution Reaction Catalysts in MA2Z4 Materials

密度泛函理论 材料科学 催化作用 吉布斯自由能 机器学习 物理化学 热力学 计算化学 计算机科学 原子物理学 量子力学 物理 化学 生物化学
作者
Jingnan Zheng,Xiang Sun,Jiaxi Hu,Shibin Wang,Zihao Yao,Shengwei Deng,Xiang Pan,Zhiyan Pan,Jianguo Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (43): 50878-50891 被引量:43
标识
DOI:10.1021/acsami.1c13236
摘要

Two-dimensional (2D) materials have been developed into various catalysts with high performance, but employing them for developing highly stable and active nonprecious hydrogen evolution reaction (HER) catalysts still encounters many challenges. To this end, the machine learning (ML) screening of HER catalysts is accelerated by using genetic programming (GP) of symbolic transformers for various typical 2D MA2Z4 materials. The values of the Gibbs free energy of hydrogen adsorption (ΔGH*) are accurately and rapidly predicted via extreme gradient boosting regression by using only simple GP-processed elemental features, with a low predictive root-mean-square error of 0.14 eV. With the analysis of ML and density functional theory (DFT) methods, it is found that various electronic structural properties of metal atoms and the p-band center of surface atoms play a crucial role in regulating the HER performance. Based on these findings, NbSi2N4 and VSi2N4 are discovered to be active catalysts with thermodynamical and dynamical stability as ΔGH* approaches to zero (-0.041 and 0.024 eV). In addition, DFT calculations reveal that these catalysts also exhibit good deuterium evolution reaction (DER) performance. Overall, a multistep workflow is developed through ML models combined with DFT calculations for efficiently screening the potential HER and DER catalysts from 2D materials with the same crystal prototype, which is believed to have significant contribution to catalyst design and fabrication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
wanci应助小全采纳,获得10
2秒前
3秒前
朴实问筠完成签到 ,获得积分10
3秒前
GAOBIN000发布了新的文献求助10
4秒前
Alex完成签到,获得积分10
5秒前
8秒前
李爱国应助贾克斯采纳,获得10
8秒前
CodeCraft应助一切随风采纳,获得10
8秒前
量子星尘发布了新的文献求助10
10秒前
Odingers发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
13秒前
慈祥的煎蛋完成签到,获得积分10
14秒前
fwi小白完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
快乐科研发布了新的文献求助10
18秒前
Largequail发布了新的文献求助20
18秒前
华仔应助东方天奇采纳,获得20
21秒前
武映易完成签到 ,获得积分10
22秒前
ccmocker发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
27秒前
快乐科研完成签到,获得积分10
28秒前
Jasper应助葵小葵采纳,获得10
28秒前
30秒前
小全发布了新的文献求助10
31秒前
31秒前
东方天奇完成签到,获得积分10
31秒前
Aurora完成签到,获得积分10
32秒前
赘婿应助Chuwei采纳,获得10
33秒前
33秒前
牛乘风发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助10
35秒前
35秒前
36秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664444
求助须知:如何正确求助?哪些是违规求助? 3224488
关于积分的说明 9757694
捐赠科研通 2934379
什么是DOI,文献DOI怎么找? 1606832
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735012