Real-to-Sim Registration of Deformable Soft Tissue with Position-Based Dynamics for Surgical Robot Autonomy

计算机科学 计算机视觉 人工智能 职位(财务) 机器人 点云 桥(图论) 点(几何) 动力学(音乐) 感知 生物 经济 内科学 声学 神经科学 财务 数学 几何学 物理 医学
作者
Fei Liu,Zihan Li,Yunhai Han,Jingpei Lu,Florian Richter,Michael C. Yip
标识
DOI:10.1109/icra48506.2021.9561177
摘要

Autonomy in robotic surgery is very challenging in unstructured environments, especially when interacting with deformable soft tissues. The main difficulty is to generate model-based control methods that account for deformation dynamics during tissue manipulation. Previous works in vision-based perception can capture the geometric changes within the scene, however, model-based controllers integrated with dynamic properties, a more accurate and safe approach, has not been studied before. Considering the mechanic coupling between the robot and the environment, it is crucial to develop a registered, simulated dynamical model. In this work, we propose an online, continuous, real-to-sim registration method to bridge 3D visual perception with position-based dynamics (PBD) modeling of tissues. The PBD method is employed to simulate soft tissue dynamics as well as rigid tool interactions for model-based control. Meanwhile, a vision-based strategy is used to generate 3D reconstructed point cloud surfaces based on real-world manipulation, so as to register and update the simulation. To verify this real-to-sim approach, tissue experiments have been conducted on the da Vinci Research Kit. Our real-to-sim approach successfully reduces registration error online, which is especially important for safety during autonomous control. Moreover, it achieves higher accuracy in occluded areas than fusion-based reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
Wing完成签到 ,获得积分10
1秒前
R先生发布了新的文献求助10
1秒前
科研小白发布了新的文献求助10
1秒前
年三月完成签到 ,获得积分10
2秒前
lb完成签到,获得积分20
2秒前
2秒前
香蕉觅云应助叶飞荷采纳,获得10
3秒前
flow发布了新的文献求助10
4秒前
穆仰应助li采纳,获得10
4秒前
班尼肥鸭完成签到 ,获得积分10
4秒前
噔噔噔噔发布了新的文献求助10
4秒前
bkagyin应助ffff采纳,获得10
4秒前
000完成签到,获得积分10
4秒前
4秒前
Anxinxin发布了新的文献求助20
5秒前
5秒前
Ych完成签到,获得积分20
6秒前
lai发布了新的文献求助10
6秒前
彭彭发布了新的文献求助10
6秒前
ggb完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
迅速宛筠完成签到,获得积分10
7秒前
弄井完成签到,获得积分10
8秒前
充电宝应助无悔呀采纳,获得10
8秒前
8秒前
9秒前
000发布了新的文献求助10
9秒前
噔噔噔噔完成签到,获得积分10
10秒前
11秒前
刘怀蕊发布了新的文献求助10
12秒前
舒心赛凤发布了新的文献求助10
12秒前
文艺明杰完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762